
C2000™ Microcontroller Blockset
Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

C2000™ Microcontroller Blockset Reference
© COPYRIGHT 2022–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2023 Online only New for Version 1.0 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Configuration Parameters
1

Model Configuration Parameters for Texas Instruments C2000 Processors
. 1-2

Hardware board settings . 1-4
Design Mapping . 1-4
Task profiling in simulation . 1-4
Task profiling on processor . 1-4
Simulation settings . 1-5
Hardware Board Settings . 1-5

Model Configuration Parameters for Texas Instruments F2838x (ARM
Cortex-M4) . 1-40

Hardware Board Settings . 1-40

Model Configuration Parameters for Texas Instruments Concerto F28M3x
(ARM Cortex-M3) . 1-51

Hardware Implementation Pane Overview . 1-51
C28x / ARM Cortex-M3 - Build options . 1-52
M3x-Clocking . 1-53
M3x-GPIO A–D . 1-54
M3x-UART0–4 . 1-54
M3x-Ethernet . 1-55
M3x-PIL . 1-55
External mode . 1-56
SD Card Logging . 1-56

C28x / ARM Cortex-M3 - Build options . 1-57
Build action . 1-57
Device name . 1-57
Disable parallel build . 1-57
Boot From Flash (stand alone execution) . 1-57
Use custom linker command file . 1-57
Linker command file . 1-57
CCS hardware configuration file . 1-58

M3x-Clocking . 1-59
Desired C28x CPU clock in MHz . 1-59
Oscillator clock (OSCCLK) frequency in MHz . 1-59
Auto set PLL based on OSCCLK and CPU clock . 1-59
System PLL multiplier (SYSPLLMULT)[1–127.75] 1-59
System clock divider (SYSDIVSEL) . 1-59
Achievable C28x SYSCLK in MHz = (OSCCLK * SYSPLLMULT/ 2/

SYSDIVSEL) . 1-59
M3 System clock divider (M3SSDIVSEL) . 1-59

iii

Contents

M3 SYSCLK in MHz = (OSCCLK * SYSPLLMULT/ 2/ SYSDIVSEL/
M3SSDIVSEL) . 1-60

M3x-GPIO A–D . 1-61
Enable GPIO port A . 1-61
Show GPIOA settings for . 1-61
Select the CPU core which controls Pin # . 1-61
Select the pin type for Pin 0 . 1-61

M3x-UART0–4 . 1-62
Enable UART Loopback . 1-62
Enable M3 UART4 to C28 SCI-A Loopback . 1-62
Desired Baud rate (in bits/sec) . 1-62
Closest Achievable Baud rate (in bits/sec) . 1-62
Number of stop bits . 1-62
Parity mode . 1-62
Pin assignment(Tx) . 1-63
Pin assignment(Rx) . 1-63
Enable Transmit Interrupt . 1-63
Enable Receive Interrupt . 1-63

M3x-Ethernet . 1-64
Enable DHCP for local IP address assignment . 1-64
Local IP address . 1-64
Subnet mask . 1-64
Ethernet local host name . 1-64
MAC address . 1-64

M3x-PIL . 1-65
PIL communication interface . 1-65
Serial port . 1-65
PIL Baud Rate (UART) Baud rate) . 1-65
Ethernet port . 1-65

External mode . 1-66
Communication interface . 1-66
Serial port . 1-66
Verbose . 1-66

Serial Configuration for External Mode and PIL 1-67

Analog subsystem . 1-70

Overrun detection . 1-71

Input X-BAR . 1-73

Output X-BAR . 1-76

CLB X-BAR . 1-83

CLB . 1-93

ARM Cortex-M4 - MCAN . 1-96

iv Contents

External Mode . 1-107

PIL . 1-109

Hardware Board Settings . 1-111
Processing Unit . 1-111

ARM Cortex-M4 - Build Options . 1-112

ARM Cortex-M4 - Clocking . 1-114

ARM Cortex-M4 - Ethernet . 1-115

ARM Cortex-M4 - UART . 1-117

C28x-ADC/C28x-ADC_A/C28x-ADC# . 1-119

C28x-Build Options . 1-122

C28x-Clocking . 1-125

C28x-DAC . 1-128

C28x-COMP . 1-129

C28x-DMA_ch# . 1-130

C28x-eCAN_A, C28x-eCAN_B . 1-136

C28x-eCAP . 1-138

C28x-EMIF . 1-140

C28x-ePWM . 1-145

C28x-eQEP . 1-154

C28x-GPIO . 1-155

C28x-I2C . 1-159

C28x-LIN . 1-163

C28x-Scheduler Options . 1-168

C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D 1-169

C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI_D 1-172

C28x-Watchdog . 1-174

CMPSS . 1-175

Execution profiling . 1-178

v

External Interrupt . 1-179

External Mode . 1-180

PIL . 1-183

SD Card Logging . 1-184

SDFM . 1-185

Blocks
2

Read Data from IMU and Environmental Sensors 2-309

Encode and Decode Serial Data Using C2000-based Hardware 2-316

. 2-322

Appendix
3

vi Contents

Configuration Parameters

1

Model Configuration Parameters for Texas Instruments C2000
Processors

To configure hardware parameters for Texas Instruments C2000 processors:

1 In the Simulink® Editor, select Modeling > Model Settings.
2 In the Configuration Parameter dialog box, click Hardware Implementation.

3 Set the Hardware board parameter to your C2000 processors.
4 The parameter values under Hardware board settings are automatically populated to their

default values.

You can optionally adjust these parameters for your particular use case.

1 Configuration Parameters

1-2

Note When selecting the processing unit, choose the central processing unit (CPU) or control
law accelerator (CLA) or CortexM4 onto which to deploy the model block in the model. The
default values varies based on the processor selected.

5 Click Apply.

Note In the Hardware board drop-down list, some processors have multiple options. Select the
generic option for controlCARDs and custom boards, and select the LaunchPad option for
LaunchPads. For example, select TI Delfino F2837xS as the generic option, and select TI Delfino
F28377S Launchpad as the LaunchPad option. Based on your selection, the default values for clock
settings, pin selection, and memory mapping change.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-3

Hardware board settings
Parameter Description Default Value
“Processing Unit” on page 1-111 Processor or CLA for model

block in the MCU model.
None

Design Mapping
Parameter Description Default Value
“Design Mapping” (SoC
Blockset)

Open the hardware mapping
tool.

not applicable

Task profiling in simulation
Parameter Description Default Value
“Show in SDI” (SoC Blockset) Show the task execution data

collected in simulation in the
Simulation Data Inspector
application.

on

“Save to file” (SoC Blockset) Save the task execution data to
a file.

on

“Overwrite file” (SoC Blockset) Overwrite the last task
execution data file.

off

Task profiling on processor
Parameter Description Default Value
“Show in SDI” (SoC Blockset) Show the task execution data

collected on hardware in the
Simulation Data Inspector
application.

off

“Save to file” (SoC Blockset) Save the task execution data to
a file.

off

“Overwrite file” (SoC Blockset) Overwrite the last task
execution data file.

off

“Instrumentation” (SoC
Blockset)

Choose to perform code
instrumentation or Kernel
instrumentation.

Code

“Profiling duration” (SoC
Blockset)

Choose whether to perform
Kernel profiling for an unlimited
or limited time duration.

Unlimited

1 Configuration Parameters

1-4

Simulation settings
Parameter Description Default Value
“Set random number generator
seed” (SoC Blockset)

Set the random number
generator seed.

off

“Seed Value” (SoC Blockset) Specify the seed value for the
simulation of task duration
deviation.

default

“Cache input data at task start”
(SoC Blockset)

Cache the input data at the start
of a task.

off

Hardware Board Settings
For each hardware board you select, you can configure the board parameters according to your
requirements.

Scheduler Options

Parameter Description Default Value
Base rate trigger on page 1-168 Set the static priority of the

base rate task in the operating
system.

Timer 0

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-5

Build Options

Parameter Description Default Value
Build action on page 1-122 Define how Embedded Coder®

responds when you build your
model.

Build, load, and run

Disable parallel build on page 1-
122

Select to compile the generated
code and driver source codes in
parallel order for faster build
and deployment speed.

off

Device name on page 1-122 Select your device from the
selected processor family.

Enable TMU on page 1-122 Enables support for
Trigonometric Math Unit
(TMU).

enabled

Boot From Flash (stand alone
execution) on page 1-122

Specify if the application loads
to the flash memory.

enabled

Use custom linker command file
on page 1-122

Indicates that the custom linker
command file must be used
during the build action.

off

Linker command file on page 1-
122

The path to the memory
description file required during
linking.

CCS hardware configuration file
on page 1-122

The Code Composer Studio™
file required for downloading
the application on the hardware.

Enable DMA to access ePWM
Registers instead of CLA on
page 1-122

Select to access ePWM
Registers

Enable DMA to peripheral frame
1 (ePWM, HRPWM, eCAP, eQEP,
DAC,CMPSS, and SDFM)
instead of CLA on page 1-122

Select to enable the DMA to
access peripheral frame 1

Enable DMA to peripheral frame
2 (SPI and McBSP) instead of
CLA on page 1-122

Select to enable the DMA to
access peripheral frame 2

Enable FastRTS on page 1-122 Enables use of optimized
floating point math functions
from C28x FPU fastRTS library

enabled

Remap ePWMs for DMA access
(Requires silicon revision A and
above) on page 1-122

Select to remap ePWMs
registers for DMA access

Configure CLA program and
data memory on page 1-122

Enable this option to configure
LSRAM memory for CLA
program or data.

Disabled

1 Configuration Parameters

1-6

Parameter Description Default Value
Maximum LSRAM size for CLA
program (in KW) on page 1-122

Select the maximum LSRAM
size that is available for CLA
program in KiloWords.

Maximum LSRAM size for CLA
data (in KW) on page 1-122

Select the maximum LSRAM
size that is available allowed for
CLA data in KiloWords.

Available LSRAM size for CPU
(in KW) on page 1-122

Displays the remaining available
LSRAM size for CPU in
KiloWords.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-7

Clocking

Parameter Description Default Value
Desired CPU Clock in MHz on
page 1-125

Specify the desired CPU clock
frequency (CLKIN).

Use internal oscillator on page
1-125

Use the internal zero pin
oscillator on the CPU.

enabled

Oscillator clock (OSCCLK)
frequency in MHz on page 1-
125

Oscillator frequency used in the
processor.

Auto set PLL based on OSCCLK
and CPU clock on page 1-125

PLL values in PLLCR, DIVSEL,
and Achievable SYSCLKOUT
in MHz are automatically
calculated based on the CPU
clock entered on the board.

PLL control register (PLLCR) on
page 1-125

If you select Auto set PLL
based on OSCCLK and CPU
clock, the auto-calculated
control register value matches
the specified CPU clock value,
based on the oscillator clock
frequency.

PLL output divider (ODIV) on
page 1-125

Calculates SYSCLKOUT =
((OSCCLK×SYSPLLMULT)/
ODIV)/SYSDIVSEL.

Clock divider (DIVSEL) on page
1-125

If you select Auto set PLL
based on OSCCLK and CPU
clock, the auto-calculated
control register value matches
the specified CPU clock value,
based on the oscillator clock
frequency.

Achievable SYSCLKOUT in MHz
= (OSCCLK×PLLCR)/DIVSEL on
page 1-125

The auto-calculated feedback
value that matches the Desired
C28x CPU clock in MHz value,
based on the values of OSCCLK,
PLLCR, and DIVSEL.

Set the 'Achievable SYSCLKOUT
in MHz =
(OSCCLK*SYSPLLMULT)/
SYSDIVSEL' value calculated in
CPU1 on page 1-125

Available only for CPU2 of dual
C28x core processors. Value of
this parameter must be same as
the value of the parameter
Achievable SYSCLKOUT in
MHz = (OSCCLK*PLLCR)/
DIVSEL (auto calculated).

1 Configuration Parameters

1-8

Parameter Description Default Value
Select the 'Low-Speed
Peripheral Clock Prescaler
(LSPCLK)' option used in CPU1
on page 1-125

Available only for CPU2 of dual
C28x core processors. Value of
this parameter must be same as
the value of the parameter Low-
Speed Peripheral Clock
Prescaler (LSPCLK) specified
in CPU1.

Low-Speed Peripheral Clock
Prescaler (LSPCLK) on page 1-
125

Prescaler value used to
calculate LSPCLK based on
SYSCLKOUT.

Low-Speed Peripheral Clock
(LSPCLK) in MHz on page 1-125

The LSPCLK value calculated
using the SYSCLKOUT and
LSPCLK Prescaler values.

High-Speed Peripheral Clock
Prescaler (HSPCLK) on page 1-
125

Prescaler value used to
calculate HSPCLK based on
SYSCLKOUT.

High-Speed Peripheral Clock
(HSPCLK) in MHz on page 1-
125

The HSPCLK value calculated
using the SYSCLKOUT and
HSPCLK Prescaler values.

Analog Subsystem Clock
Prescaler (ASYSCLK) on page 1-
125

Prescaler value used to
calculate ASYSCLK based on
SYSCLKOUT.

Analog Subsystem Clock
(ASYSCLK) in MHz on page 1-
125

The ASYSCLK value calculated
using the SYSCLKOUT and
ASYSCLK Prescaler values.

Connectivity Manager (ARM
Cortex-M) clock source on page
1-125

Select the clock source for ARM
Cortex-M core.

System PLL

Connectivity Manager (ARM
Cortex-M) clock divider on page
1-125

Select the divider for the ARM
Cortex-M core clock.

4

Connectivity Manager (ARM
Cortex-M) clock in MHz on page
1-125

The calculated value of the
clock frequency (in MHz)
supplied to ARM Cortex-M core.

100

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-9

ADC_x

Parameter Description Default Value
Select the CPU core which
controls ADC_x module on page
1-119

The CPU core that controls the
ADC module.

Auto

ADC clock prescaler (ADCCLK)
on page 1-119

The ADCCLK divider for the
c2802x, c2803x, c2806x,
F28M3x, F2807x, or F2837x
processor.

SYSCLKOUT/5.0

ADC clock frequency in MHz on
page 1-119

The clock frequency for ADC,
which is auto generated based
on the value you select in ADC
clock prescaler (ADCCLK).

40

ADC overlap of sample and
conversion
(ADC#NONOVERLAP) on page
1-119

Enable or disable overlap of
sample and conversion.

ADC clock prescaler (ADCLKPS)
on page 1-119

The HSPCLK is divided by
ADCLKPS (a 4-bit value) as the
first step in deriving the core
clock speed of the ADC.

3

ADC Core clock prescaler (CPS)
on page 1-119

After dividing the HSPCLK
speed by the ADC clock
prescaler (ADCLKPS) value,
divides the result by 2.

1

ADC Module clock (ADCCLK =
HSPCLK/ADCLKPS×2)/(CPS
+1)) in MHz on page 1-119

The ADC module clock, which
indicates the ADC operating
clock speed.

Acquisition window prescaler
(ACQ_PS) on page 1-119

Determine the width of the
sampling or acquisition period.
A higher value indicates a wider
sampling period.

4

Acquisition window size
((ACQ_PS+1)/ADCCLK) in micro
seconds/channel on page 1-119

Determine the duration for
which the sampling switch is
closed.

Offset on page 1-119 Specify the offset value.
Use external reference 2.048V
on page 1-119

Allows using a 2.048 V external
voltage reference.

Use external reference on page
1-119

Allows using an external voltage
reference.

1 Configuration Parameters

1-10

Parameter Description Default Value
Continuous mode on page 1-119 When the ADC generates an end

of conversion (EOC) signal, an
ADCINT# interrupt is
generated. The interrupt
indicates whether the previous
interrupt flag has been
acknowledged.

ADC offset correction
(OFFSET_TRIM: –256 to 255) on
page 1-119

The 280x ADC supports offset
correction using a 9-bit value
that it adds or subtracts before
the results are available in the
ADC result registers.

0

VREFHI, VREFLO on page 1-
119

When you disable the Use
external reference 2.048V or
External reference option, the
ADC logic uses a fixed 0–3.3 V
input range, and VREFHI and
VREFLO are disabled. To
interpret the ADC input as a
ratiometric signal, select the
External reference option.
Then, set values for the high-
voltage reference (VREFHI) and
the low voltage reference
(VREFLO).

INT pulse control on page 1-119 Set the time when the ADC sets
ADCINTFLG ADCINTx relative
to the SOC and EOC pulses.

SOC high priority on page 1-119 Enable SOC high priority mode. All in round robin mode
XINT2SOC external pin on page
1-119

The pin to which the ADC sends
the XINT2SOC pulse.

ADCEXTSOC external pin on
page 1-119

The GPIO pin from which ADC
receives the ADCEXTSOC pulse.

GPIO#

ADCEXTSOC Input X-BAR on
page 1-119

Indicates the input of X-BAR for
ADC external SOC.

Input#

COMP

Parameter Description Default Value
Comparator x (COMPx) pin
assignment on page 1-129

Assign COMP pin to a GPIO pin.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-11

DAC

Parameter Description Default Value
DACx reference voltage on page
1-128

Select the reference voltage for
the DAC channel A, B, or C.

ADC reference voltage
(VREFHIA/VREFHIB)

DACx synchronization signal on
page 1-128

Select the synchronization
signal to load the value from the
writable shadow register into
the active register.

SYSCLK

1 Configuration Parameters

1-12

eCAN_x

Parameter Description Default Value
CAN module clock frequency (=
SYSCLKOUT) in MHz on page 1-
136

The clock for the enhanced CAN
module.

200

CAN module clock frequency
(=SYSCLKOUT/2) in MHz on
page 1-136

The clock for the enhanced CAN
module.

Baud rate prescaler (BRP: 2 to
256)/Baud rate prescaler (BRP:
1 to 1024) on page 1-136

Scale the bit rate using this
value.

20

Time segment 1 (TSEG1) on
page 1-136

Set the value of time segment 1.
This value, with TSEG2 and
Baud rate prescaler,
determines the length of a bit
on the eCAN bus.

Time segment 2 (TSEG2) on
page 1-136

Set the value of time segment 2.
This value, with TSEG1 and
Baud rate prescaler,
determines the length of a bit
on the eCAN bus.

Baud rate (CAN Module
Clock/BRP/(TSEG1 + TSEG2
+1)) in bits/sec on page 1-136

CAN module communication
speed represented in bits/
second.

SBG on page 1-136 Set the message
resynchronization triggering.

SJW on page 1-136 Set the synchronization jump
width, which determines how
many units of TQ a bit can be
shortened or lengthened by
when resynchronizing.

SAM on page 1-136 Number of samples used by the
CAN module to determine the
CAN bus level.

Enhanced CAN Mode on page 1-
136

Enable time stamping and usage
of Mailbox Numbers 16 through
31 in the C2000 eCAN blocks.

Self test mode on page 1-136 If you set this parameter to
True, the eCAN module goes to
loopback mode. The loopback
mode sends a dummy
acknowledge message back.

False

Pin assignment (Tx) on page 1-
136

Assign the CAN transmit pin to
use with the eCAN_B module.

Pin assignment (Rx) on page 1-
136

Assign the CAN receive pin to
use with the eCAN_B module.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-13

eCAP

Parameter Description Default Value
ECAPx capture pin assignment
on page 1-138

Indicates the GPIO pin used for
eCAP in capture mode.

GPIO#

ECAPx Input X-BAR on page 1-
138

Select input X-BAR for ECAP INPUT#

ECAPx APWM pin assignment
on page 1-138

The GPIO pin to which output of
the eCAP in APWM mode is
sent.

GPIO#

Output X-BAR on page 1-138 Indicates which Output X-BAR is
used for the selected ECAP#
APWM pin assignment
parameter.

#

eCAPxSYNCIN source selection
on page 1-138

Indicates the SYNC source
select register for the ePWM
SYNCOUT, eCAP SYNCOUT,
INPUTXBAR and
EtherCATSYNC.

The default eCAPxSYNCIN
source selection value
varies based on the
processor selected.

1 Configuration Parameters

1-14

ePWM

Parameter Description Default Value
EPWM clock divider
(EPWMCLKDIV) on page 1-145

Select the ePWM clock divider. SYSCLKOUT/1

Select the 'EPWM clock divider
(EPWMCLKDIV)' option used for
CPU1 on page 1-145

Available only for CPU2 of dual
C28x core processors. Its value
must be the same as the value
of the parameter EPWM clock
divider (EPWMCLKDIV)
selected in CPU1.

TZx Input X-BAR on page 1-145 Indicates the trip-zone input X-
BAR.

INPUT#

TZx pin assignment on page 1-
145

Indicates the GPIO pin to the
trip-zone input x (TZx).

None

TRIP# MUX select on page 1-
145

Select the TRIP
Multiplexer(MUX).

Disable all

TRIP# MUX (MUX 0->31) on
page 1-145

Indicates the inputs selected for
each MUX so far.

XXXXXXXXXXX

Select MUX input on page 1-145 Select the input to the
Multiplexer selected in TRIP#
MUX select.

X:Disable

Reset TRIP# MUX on page 1-
145

Option to reset the MUX inputs
selected.

Invert TRIP output on page 1-
145

Inverts the TRIP output signal. off

SYNCI Input X-BAR on page 1-
145

Indicates the SYNCI input X-
BAR.

INPUT#

SYNCI pin assignment on page
1-145

Indicates the GPIO pin used for
the ePWM external sync pulse
input (SYNCI).

None

SYNCO pin assignment on page
1-145

Assign the ePWM external sync
pulse output (SYNCO) to a GPIO
pin.

EXTSYNCOUT source selection
on page 1-145

Select the external SYNCOUT
source for ePWM

Default value varies
based on the processor
selected

ePWMxSYNCIN source
selection on page 1-145

Select the EPWMxSYNCIN
Source Select Register
(synchronization input pulse) for
the ePWM

Default value varies
based on the processor
selected

PWM#x pin assignment on page
1-145

Assign the GPIO pin to the
PWM#x module.

GPIO#

GPTRIP#SEL pin
assignment(GPIO0~63) on page
1-145

Assign the ePWM trip-zone
input to a GPIO pin.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-15

Parameter Description Default Value
PWM1SYNCI/ GPTRIP6SEL pin
assignment on page 1-145

Assign the ePWM sync pulse
input (SYNCI) to a GPIO pin.

DCxHTRIPSEL (Enter Hex value
between 0 and 0x6FFF) on page
1-145

Assign the Digital Compare A
high trip input to a GPIO pin.

DCxLTRIPSEL (Enter Hex value
between 0 and 0x6FFF) on page
1-145

Assign the Digital Compare A
low trip input to a GPIO pin.

1 Configuration Parameters

1-16

I2C

Parameter Description Default Value
Mode on page 1-159 Configure the I2C module as

Master or Slave.

Addressing format on page 1-
159

In Slave mode, determines the
addressing format of the I2C
master and sets the I2C module
to the same mode.

Own address register on page 1-
159

In Slave mode, enter the 7-bit
(0–127) or 10-bit (0–1023)
address that the I2C module
uses.

Bit count on page 1-159 In Slave mode, sets the
number of bits in each data byte
the I2C module transmits and
receives.

Module clock prescaler (IPSC: 0
to 255) on page 1-159

In Master mode, enter a value
in the range 0–255, inclusive, to
configure the model clock
frequency.

I2C Module clock frequency
(SYSCLKOUT / (IPSC+1)) in Hz
on page 1-159

Display the frequency the I2C
module uses internally. To set
this value, change the Module
clock prescaler.

I2C Master clock frequency
(Module Clock Freq/(ICCL
+ICCH+10)) in Hz on page 1-
159

Display the master clock
frequency.

Master clock Low-time divider
(ICCL: 1 to 65535) on page 1-
159

In Master mode, determines
the duration of the low state of
the SCL on the I2C bus.

Master clock High-time divider
(ICCH: 1 to 65535) on page 1-
159

In Master mode, determines
the duration of the high state of
the SCL on the I2C bus.

Enable loopback on page 1-159 In Master mode, enables or
disables digital loopback mode.

SDA pin assignment on page 1-
159

Select a GPIO pin as an I2C data
bidirectional port.

SCL pin assignment on page 1-
159

Select a GPIO pin as an I2C
clock bidirectional port.

Enable Tx interrupt on page 1-
159

This parameter corresponds to
bit 5 (TXFFIENA) of the I2C
Transmit FIFO Register
(I2CFFTX).

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-17

Parameter Description Default Value
Tx FIFO interrupt level on page
1-159

This parameter corresponds to
bits 4–0 (TXFFIL4-0) of the I2C
transmit FIFO register
(I2CFFTX).

Enable Rx interrupt on page 1-
159

This parameter corresponds to
bit 5 (RXFFIENA) of the I2C
receive FIFO register
(I2CFFRX).

Rx FIFO interrupt level on page
1-159

This parameter corresponds to
bit 4–0 (RXFFIL4-0) of the I2C
receive FIFO register
(I2CFFRX).

Enable system interrupt on page
1-159

Select this parameter to
configure the five basic I2C
interrupt request parameters in
the interrupt enable register
(I2CIER).

Enable AAS interrupt on page 1-
159

Enable the addressed-as-slave
interrupt bit.

Enable SCD interrupt on page 1-
159

Enable the stop condition
detected interrupt bit.

Enable ARDY interrupt on page
1-159

Enable the register-access-
ready interrupt bit.

Enable NACK interrupt on page
1-159

Enable the no acknowledgment
interrupt bit.

Enable AL interrupt on page 1-
159

Enable the arbitration-lost
interrupt bit.

1 Configuration Parameters

1-18

SCI_x

Parameter Description Default Value
Enable loopback on page 1-169 Enable the loopback function for

self-test and diagnostics.

Suspension mode on page 1-169 The type of suspension to use
while debugging your program
with Code Composer Studio.

Number of stop bits on page 1-
169

Specify the number of stop bits
transmitted.

Parity mode on page 1-169 The type of parity to use.
Character length bits on page 1-
169

Length in bits of each
transmitted or received
character.

8

Desired baud rate in bits/sec on
page 1-169

Specify the desired baud rate.

Baud rate prescaler (BRR =
(SCIHBAUD << 8) |
SCILBAUD)) on page 1-169

Scale the SCI baud rate using
this value.

Closest achievable baud rate
(LSPCLK/(BRR+1)/8) in bits/sec
on page 1-169

The closest achievable baud
rate, calculated based on
LSPCLK and BRR.

Communication mode on page
1-169

Select the mode for transmitting
and receiving data.

Post transmit FIFO interrupt
when data is transmitted on
page 1-169

Posts interrupt when available
data in transmit FIFO is less
than or equal to interrupt level.

off

Transmit FIFO interrupt level
on page 1-169

Level for triggering SCI
transmit interrupt.

1

Post receive FIFO interrupt
when data is received on page
1-169

Posts interrupt when available
data in receive FIFO is greater
than or equal to interrupt level.

off

Receive FIFO interrupt level on
page 1-169

Level for triggering SCI receive
interrupt.

1

Data byte order on page 1-169 Select an option to match the
endianness of the data being
moved.

Pin assignment (Tx) on page 1-
169

Assign the SCI transmit pin to
use with the SCI module.

Pin assignment (Rx) on page 1-
169

Assign the SCI receive pin to
use with the SCI module.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-19

SPI_x

Parameter Description Default Value
Mode on page 1-172 Set to Master or Slave.
Desired baud rate in bits/sec on
page 1-172

Specify the desired baud rate.

Baud rate factor (SPIBRR:
between 3 and 127) on page 1-
172

The value used to calculate the
baud rate.

Closest achievable baud rate
(LSPCLK/(SPIBRR+1)) in
bits/sec on page 1-172

The closest achievable baud
rate, calculated based on
LSPCLK and SPIBRR.

Suspension mode on page 1-172 The type of suspension to use
while debugging your program
with Code Composer Studio.

Enable loopback on page 1-172 Enable the loopback function for
self-test and diagnostics.

off

Enable 3-wire mode on page 1-
172

Enables SPI communication
over three pins instead of the
normal four pins.

off

Enable Tx interrupt on page 1-
172

Enable SPI transmit interrupt
operation.

off

FIFO interrupt level (Tx) on
page 1-172

Set level for transmit FIFO
interrupt.

0

Enable Rx interrupt on page 1-
172

Enable SPI receive interrupt
operation.

off

Enable high speed mode on
page 1-172

Enable high speed SPI mode for
supported pins.

FIFO interrupt level (Rx) on
page 1-172

Set level for receive FIFO
interrupt.

FIFO transmit delay on page 1-
172

FIFO transmit delay (in
processor clock cycles) to pause
between data transmissions.

Peripheral in controller out pin
assignment on page 1-172

Assign the SPI (SIMO) to a GPIO
pin.

Peripheral out controller in pin
assignment on page 1-172

Assign the SPI value (SOMI) to
a GPIO pin.

CLK pin assignment on page 1-
172

Assign the CLK pin to a GPIO
pin.

STE pin assignment on page 1-
172

Assign the SPI value (STE) to a
GPIO pin.

1 Configuration Parameters

1-20

eQEP

Parameter Description Default Value
EQEP#x pin assignment on
page 1-154

Assign eQEP pin to a GPIO pin.

Watchdog

Parameter Description Default Value
Enable watchdog on page 1-174 Enable the watchdog timer

module.

Counter clock on page 1-174 Set the watchdog timer period
relative to OSCCLK/512.

Timer period ((1/Counter clock)
×256) in seconds on page 1-174

Display the timer period in
seconds. This value
automatically updates when you
change the Counter clock
parameter.

Time out event on page 1-174 Configure the watchdog to reset
the processor or generate an
interrupt when the software
fails to reset the watchdog
counter.

GPIO

Parameter Description Default Value
GPIO# on page 1-155 Use the GPIO pins for digital

input or output by connecting to
one of the three peripheral I/O
ports.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-21

DMA_ch#

Parameter Description Default Value
Enable DMA channel on page 1-
130

Enable to edit the configuration
of a specific DMA channel.

Data size on page 1-130 Select the size of the data bit
transfer.

Interrupt source on page 1-130 Select the peripheral interrupt
that triggers a DMA burst for
the specified channel.

SRC wrap on page 1-130 Specify the number of bursts
before returning the current
source address pointer to the
Source Begin Address value.

DST wrap on page 1-130 Specify the number of bursts
before returning the current
destination address pointer to
the Destination Begin
Address value.

SRC Begin address on page 1-
130

Set the starting address for the
current source address pointer.

DST Begin address on page 1-
130

Set the starting address for the
current destination address
pointer.

Burst on page 1-130 Specify the number of 16-bit
words in a burst, from 1 to 32.

Transfer on page 1-130 Specify the number of bursts in
a transfer, from 1 to 65536.

SRC Burst step on page 1-130 Increment or decrement the
current address pointer by this
number of 16-bit words before
the next burst.

DST Burst step on page 1-130 Increment or decrement the
current address pointer by this
number of 16-bit words before
the next burst.

SRC Transfer step on page 1-
130

Increment or decrement the
current address pointer by this
number of 16-bit words before
the next transfer.

DST Transfer step on page 1-
130

Increment or decrement the
current address pointer by this
number of 16-bit words before
the next transfer.

1 Configuration Parameters

1-22

Parameter Description Default Value
SRC Wrap step on page 1-130 Increment or decrement the

SRC_BEG_ADDR address
pointer by this number of 16-bit
words when a wrap event
occurs.

DST Wrap step on page 1-130 Increment or decrement the
DST_BEG_ADDR address
pointer by this number of 16-bit
words when a wrap event
occurs.

Generate interrupt on page 1-
130

Enable this parameter to have
the DMA channel send an
interrupt to the CPU through
the Peripheral Interrupt
Expansion (PIE) at the
beginning or end of a data
transfer.

Enable one shot mode on page
1-130

Enable this parameter to have
the DMA channel complete an
entire transfer in response to an
interrupt event trigger.

Sync enable on page 1-130 Enable this parameter to reset
the DMA wrap counter when the
Interrupt source is set to
SEQ1INT and sends the
ADCSYNC signal to the DMA
wrap counter.

Enable continuous mode on
page 1-130

Select this parameter to leave
the DMA channel enabled upon
completing a transfer. The
channel waits for the next
interrupt event trigger.

Enable DST sync mode on page
1-130

Enabling this parameter resets
the destination wrap counter
(DST_WRAP_COUNT) when
Sync enable is enabled and the
DMA module receives the
SEQ1INT interrupt/ADCSYNC
signal.

Set channel 1 to highest priority
on page 1-130

Enable this option when DMA
channel 1 is configured to
handle high-bandwidth data,
such as ADC data, and the other
DMA channels are configured to
handle lower-priority data.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-23

Parameter Description Default Value
Enable overflow interrupt on
page 1-130

Enable this parameter to have
the DMA channel send an
interrupt to the CPU through
the PIE if the DMA module
receives a peripheral interrupt
while a previous interrupt from
the same peripheral is waiting
to be serviced.

1 Configuration Parameters

1-24

EMIF#

Parameter Description Default Value
EMIF clock divider
(EMIF1CLKDIV) on page 1-140

Clock divider for clock
frequency generation.

SYSCLKOUT/2

Enable CS0 for Synchronous
memory on page 1-140

Chip select (CS0) to interface
with the SDRAM.

off

Enable CS# for Asynchronous
memory on page 1-140

Chip select (CS2/CS3/CS4) to
interface with the asynchronous
RAM.

off

SDRAM Column address bits on
page 1-140

Value of the column address bits
or the required page size of the
connected SDRAM.

8

Number of internal SDRAM
banks on page 1-140

Number of memory banks inside
the connected SDRAM.

3

SDRAM data bus width in bits
on page 1-140

Data bus width of the connected
SDRAM.

16

Refresh to active command
delay cycles (T_RFC) on page 1-
140

Minimum number of EM#CLK
cycles from the refresh or load
mode command to the refresh
or activate command in the
connected SDRAM.

3

Row precharge to Active
command delay cycles (T_RP) on
page 1-140

Minimum number of EM#CLK
cycles required from the row
precharge command to the
activate or refresh command in
the connected SDRAM.

1

Active to read or write
command delay cycles (T_RCD)
on page 1-140

Minimum number of EM#CLK
cycles from the activate
command to the read or write
command in the connected
SDRAM.

2

Last write to row precharge
command delay cycles (T_WR)
on page 1-140

Minimum number of EM#CLK
cycles from the last write
transfer or last data in
command to the row precharge
command in the connected
SDRAM.

1

Active to precharge command
delay cycles (T_RAS) on page 1-
140

Minimum number of EM#CLK
cycles from the activate
command to the row precharge
command in the connected
SDRAM.

4

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-25

Parameter Description Default Value
Active to active command delay
cycles (T_RC) on page 1-140

Minimum number of EM#CLK
cycles from an activate
command to the next activate
command in the same bank in
the connected SDRAM.

6

Active one bank to active
another bank command delay
cycles (T_RRD) on page 1-140

Minimum number of EM#CLK
cycles from an activate
command in one bank to an
activate command in a different
bank in the connected SDRAM.

1

Self-refresh exit to other
command delay cycles (T_XSR)
on page 1-140

Minimum number of EM#CLK
cycles from the self refresh exit
command to any other
command in the connected
SDRAM.

7

SDRAM refresh period
(tRefreshPeriod) in ms on page
1-140

Defines the rate at which the
connected SDRAM refreshes.

64

SDRAM CAS Latency on page 1-
140

CAS latency required to access
the connected SDRAM.

3

Asynchronous mode on page 1-
140

Asynchronous mode for the
connected asynchronous
memory.

Normal

Asynchronous data bus width in
bits on page 1-140

Data bus width of the connected
asynchronous memory.

16

Read strobe setup cycles
(R_SETUP) on page 1-140

Number of EM#CLK cycles
from the EMIF chip select to the
pin enable for asynchronous
memory assert.

15

Read strobe duration cycles
(R_STROBE) on page 1-140

Number of EM#CLK cycles
during which the pin enable for
the asynchronous memory is
held active.

64

Read strobe hold cycles
(R_HOLD) on page 1-140

Number of EM#CLK cycles
during which the EMIF chip
select is held active after pin
enable for the asynchronous
memory is deasserted.

7

Write strobe setup cycles
(W_SETUP) on page 1-140

Number of EM#CLK cycles
from the EMIF chip select to the
write enable for the
asynchronous memory assert.

15

Write strobe duration cycles
(W_STROBE) on page 1-140

Number of EM#CLK cycles
during which the write enable
for the asynchronous memory is
held active.

63

1 Configuration Parameters

1-26

Parameter Description Default Value
Write strobe hold cycles
(W_HOLD) on page 1-140

Number of EM#CLK cycles
during which the EMIF chip
select is held active after write
enable for the asynchronous
memory is deasserted.

7

Turn around cycles (TA) on page
1-140

Number of EM#CLK cycles
between the end of one
asynchronous memory access
and the start of another
asynchronous memory access.

3

Enable extended wait mode on
page 1-140

Enable the extended wait option
for the asynchronous memory.

off

Maximum extended wait cycles
for Asynchronous memory
(MAX_EXT_WAIT) [0–255] on
page 1-140

EMIF waits for (MAX_EXT_WAIT
+1) * 16 clock cycles before the
asynchronous cycle is
terminated.

128

Pin polarity of extended wait on
page 1-140

Make EMIF wait if the pin is low
or high.

High

Enable wait rise interrupt on
page 1-140

Get an interrupt based on the
detection of a rising edge on the
EM#WAIT pin.

off

Enable timeout interrupt on
page 1-140

Get an interrupt when the
EM#WAIT pin does not become
inactive within the number of
cycles defined in Maximum
extended wait cycles for
Asynchronous memory
(MAX_EXT_WAIT) [0–255].

off

Enable line trap interrupt on
page 1-140

Get an interrupt when there is
an invalid cache line size or
illegal memory access.

off

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-27

LIN

Parameter Description Default Value
LIN Module clock frequency
(LM_CLK = SYSCLKOUT/2) in
MHz on page 1-163

Display the frequency of the LIN
module clock in MHz.

Enable loopback on page 1-163 Enable LIN loopback testing.
Suspension mode on page 1-163 Use this option to configure how

the LIN state machine behaves
while you debug the program
using an emulator.

Free_run

Parity mode on page 1-163 Use this option to configure
parity checking.

None

Frame length bytes on page 1-
163

Set the number of data bytes in
the response field, from 1–8
bytes.

8

Baud rate prescaler (P:
0-16777215) on page 1-163

To set the LIN baud manually,
enter a prescaler value from 0–
16777215.

15

Baud rate fractional divider (M:
0–15) on page 1-163

To set the LIN baud manually,
enter a fractional divider value
from 0–15.

4

Baud rate (FLINCLK =
LM_CLK/(16×(P+1+M/16)) in
bits/sec on page 1-163

Display the baud rate.

Communication mode on page
1-163

Enable or disable the LIN
module from using the ID-field
bits ID4 and ID5 for length
control.

ID4 and ID5 not used for
length control

Data byte order on page 1-163 Set the endianness of the LIN
message data bytes.

Little_Endian

Data swap width on page 1-163 Set the width for data swap.
Pin assignment (Tx) on page 1-
163

Map the LINTX output to a
specific GPIO pin.

GPIO9

Pin assignment (Rx) on page 1-
163

Map the LINRX input to a
specific GPIO pin.

GPIO11

LIN mode on page 1-163 Set the LIN module as a master
or a slave.

Slave

ID filtering on page 1-163 Select the type of mask filtering
comparison the LIN module
performs.

ID slave task byte

ID byte on page 1-163 If you set ID filtering as ID
byte, use this option to set the
ID BYTE, also known as the
“LIN mode message ID”.

0x3A

1 Configuration Parameters

1-28

Parameter Description Default Value
ID slave task byte on page 1-163 If you set ID filtering to ID

slave task byte, use this
option to set the ID-SlaveTask
BYTE.

0x30

Checksum type on page 1-163 Select the checksum type. Classic
Enable multibuffer mode on
page 1-163

When you select this check box,
the LIN node uses transmit and
receive buffers instead of just
one register.

Selected

Enable baud rate adapt mode on
page 1-163

This option is displayed when
you set LIN mode to Slave.

Not selected

Inconsistent synch field error
interrupt on page 1-163

If you enable this option, the
slave node generates interrupts
when it detects irregularities in
the synch field.

Disabled

No response error interrupt on
page 1-163

If you enable this option, the
LIN module generates an
interrupt if it does not receive a
complete response from the
master node within a timeout
period.

Disabled

Timeout after 3 wakeup signals
interrupt on page 1-163

When enabled, the slave node
generates an interrupt when it
sends three wakeup signals to
the master node and does not
receive a header in response.

Disabled

Timeout after wakeup signal
interrupt on page 1-163

When enabled, the slave node
generates an interrupt when it
sends a wakeup signal to the
master node and does not
receive a header in response.

Disabled

Timeout interrupt on page 1-163 When enabled, the slave node
generates an interrupt after 4
seconds of inactivity on the LIN
bus.

Disabled

Wakeup interrupt on page 1-163 The LIN slave mode generates a
wakeup interrupt based on a
request or condition.

Disabled

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-29

External Interrupt

Parameter Description Default Value
XINT# Input X-BAR on page 1-
179

Indicates the input X-BAR for
external interrupt.

Input#

XINT# GPIO on page 1-179 The GPIO pin for external
interrupt.

0

XINT# Polarity on page 1-179 Set the polarity for external
interrupt.

Falling edge

1 Configuration Parameters

1-30

External Mode

Parameter Description Default Value
Communication interface on
page 1-180

Select the type of
communication interface to run
your model in external mode.

XCP on Serial

SCI module on page 1-180 Select the serial communication
interface module.

SCI_A

Serial port in MATLAB
preferences on page 1-180

Select the COM port used by the
target hardware.

Host Interface on page 1-180 Select the interface through
which the host computer
communicates to target
hardware for signal monitoring
and parameter tuning.

Third party calibration
tools

CAN module on page 1-180 Select the CAN module to be
used with external mode

eCAN_A

CAN ID Command on page 1-
180

Enter the CAN ID Command for
the CAN module.

2

CAN ID Response on page 1-180 Enter the CAN ID Response for
the CAN module.

3

CAN vendor on page 1-180 Enter the CAN vendor for the
CAN module.

<empty>

CAN device on page 1-180 Enter the device for the CAN
module.

<empty>

CAN channel number on page 1-
180

Enter the CAN channel number
for the CAN module.

<empty>

Extended CAN ID on page 1-180 Select to use extended ID. off
Rx mailbox number on page 1-
180

Enter the Rx mailbox number
for the CAN module.

0

Tx mailbox number on page 1-
180

Enter the Tx mailbox number
for the CAN module.

1

Verbose on page 1-180 Select to view the external
mode execution progress and
updates in the Diagnostic
Viewer or in the MATLAB
command window.

off

Set logging buffer size
automatically on page 1-180

Select to automatically set the
number of bytes to preallocate
for the buffer in the hardware
during simulation.

on

Maximum number of contiguous
samples on page 1-180

Specify a value for maximum
number of contiguous samples
parameter.

8

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-31

Parameter Description Default Value
Use a dedicated timer to
improve time stamp accuracy on
page 1-180

Select to log data inside ISR at
ISR trigger rate

off

Execution Profiling

Parameter Description Default Value
Number of profiling samples to
collect on page 1-178

Enter the number of profiling
samples to collect.

SD Card Logging

Parameter Description Default Value
Enable MAT-file logging on SD
card on page 1-184

Enables the MAT-file logging for
SD card.

off

SPI module on page 1-184 Select the desired interface on
which the SD card is connected
to hardware board.

SPI baud rate on page 1-184 Select the desired option for the
SPI interface used by the SD
card.

Maximum achievable
supported by the
inserted SD Card

1 Configuration Parameters

1-32

CMPSS

Parameter Description Default Value
Configure CMPSS# on page 1-
175

Configure the comparator
subsystem (CMPSS).

off

Configure COMP# on page 1-
175

Configure the COMPH or
COMPL module.

off

Reload condition for RAMP
reference value
(RAMPLOADSEL) on page 1-175

Reload condition for RAMP
reference value.

Immediate (RAMPMAXREFA)

Invert comparator output on
page 1-175

Invert comparator output. off

Enable latch clear by
EPWMSYNCPER event on page
1-175

Enable latch clear by
EPWMSYNCPER event.

off

Configure digital filter on page
1-175

Configure the digital filter for
COMP#.

off

Sample clock prescale [0 to
1023] on page 1-175

Set the sample clock prescale
for digital filter of COMP#.

0

Sample window size on page 1-
175

Set the sample window size for
digital filter of COMP#.

0

Threshold sample size on page
1-175

Set the threshold sample
window size for digital filter of
COMP#.

0

Comparator output type for
EPWM X-BAR (CTRIP#SEL) on
page 1-175

Select the comparator output
type source for COMP#.

Asynchronous output
(ASYNCH)

Comparator output type for
OUTPUT X-BAR
(CTRIPOUT#SEL) on page 1-
175

Select the comparator output
type source for COMP#.

Asynchronous output
(ASYNCH)

DAC reference voltage on page
1-175

Select the DAC reference
voltage for CMPSS.

Internal reference
voltage (VDDA)

Reload condition for DAC value
(SWLOADSEL) on page 1-175

Select the reload condition for
DAC value.

System clock (SYSCLK)

EPWM peripheral
synchronization event on page
1-175

Select the EPWM peripheral
synchronization event.

EPWM1SYNCPER

EPWM blank window event on
page 1-175

Select the EPWM for blanking
window

EPWM1BLANK

Comparator hysteresis value on
page 1-175

Set the amount of hysteresis on
the comparator inputs.

0

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-33

SDFM#

Parameter Description Default Value
Configure filter# on page 1-185 Configure the filter channel for

the SDFM module.
off

Data pin assignment (SD#_D#)
on page 1-185

Select the data pin for the GPIO
configuration.

GPIO#

Clock pin assignment (SD#_C#)
on page 1-185

Select the clock pin for the
GPIO configuration.

GPIO#

Modulator clock mode on page
1-185

Select the modulator clock
mode.

Same as the modulator
data rate (MOD_0)

Comparator filter type on page
1-185

Select the comparator filter
type.

Sinc1

Comparator over sample ratio
(COSR) [0-31] on page 1-185

Specify the comparator OSR
value.

0

Comparator higher threshold
(HLT#) [0-32767] on page 1-185

Specify the comparator higher
threshold value to detect an
over-value condition.

0

Comparator lower threshold
(LLT#) [0-32767] on page 1-185

Specify the comparator lower
threshold value to detect an
under-value condition.

0

Comparator higher threshold
(HLTZ) [0-32767] on page 1-185

Specify the comparator higher
threshold value to detect over-
value condition.

0

Data filter type on page 1-185 Select the data filter type. Sinc1
Data over sampling ratio
(DOSR) [0-255] on page 1-185

Specify the data OSR value. 0

Data filter FIFO depth on page
1-185

Specify the FIFO value for the
data filter.

0

Enable data filter reset by PWM
on page 1-185

Enable to reset the data filter by
external PWM compare output.

off

ePWM module on page 1-185 Select the ePWM module for
synchronization.

PWM#SOCA

Comparator event # (CEVT#)
interrupt on page 1-185

Select the comparator event
(CEVT#) interrupt.

Disable

Enable high level threshold
crossing output (HLTZ) on page
1-185

Enable threshold crossing event
detection.

off

Enable modulator clock failure
interrupt on page 1-185

Enable the interrupt for
modulator clock failure.

off

Enable data filter acknowledge
interrupt on page 1-185

Enable the interrupt for new
data acknowledgment.

off

Enable comparator higher
threshold (HLT) on page 1-185

Enable to detect an over-value
condition.

off

1 Configuration Parameters

1-34

Parameter Description Default Value
Enable comparator lower
threshold (LLT) on page 1-185

Enable to detect an under-value
condition.

off

Synchronize SD Data with
PLLCLK on page 1-185

Select to synchronize the data
input to a filter with the PLL
clock.

off

Synchronize SD Clock with
PLLCLK on page 1-185

Select to synchronize the clock
input to a filter with the PLL
clock.

off

PIL

Parameter Description Default Value
Communication interface on
page 1-183

Select the type of
communication interface to run
your model.

Serial

SCI module on page 1-183 Select the serial communication
interface module.

SCI_A

Serial port in MATLAB
preferences on page 1-183

Select the COM port used by the
target hardware.

Analog subsystem

Parameter Description Default Value
External references for
VREFHIx on page 1-70

Allows using an external voltage
reference.

off

VREFHIx on page 1-70 High voltage reference. 3.3

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-35

Overrun detection

Parameter Description Default Value
Enable overrun detection on
page 1-71

Enable to notify when task
overrun occurs.

off

Set/Clear/toggle GPIO on page
1-71

Enable to select GPIO action. on

Digital output pin to set an
overrun on page 1-71

Specify the GPIO number of a
digital output.

34

GPIO set mode on page 1-71 Select the GPIO mode. Set
Additional notification option on
page 1-71

Select the additional option to
notify when task overrun
occurs.

None

PIE number on page 1-71 Specify the PIE number for the
interrupt to trigger on overrun.

1

CPU number on page 1-71 Specify the CPU number for the
interrupt to trigger on overrun.

1

Name of the function on page 1-
71

Specify the name of the C
function to call on overrun.

C2000_OverunFunction

INPUT X-BAR

Parameter Description Default Value
INPUT# pin assignment on
page 1-73

Specify the GPIO pin for input
X-BAR.

None

OUTPUT X-BAR

Parameter Description Default Value
OUTPUT# MUX select on page
1-76

Select the output
multiplexer(MUX).

Disable all

Select MUX input on page 1-76 Select the input to the MUX
selected for OUTPUT# MUX
select.

X:Disable

OUTPUT# MUX (MUX 0->31)
on page 1-76

Indicates the input signal
selected for each output MUX.

XXXXXXXXXXXXXXXXXXXXXXX

Reset OUTPUT# MUX on page
1-76

Option to reset the MUX inputs
selected.

OUTPUT# pin assignment on
page 1-76

Select the GPIO pin for the
output X-BAR MUX signals.

GPIO#

Enable OUTPUT# latch on page
1-76

Enables the output latch to
drive the respective output X-
BAR.

off

Invert OUTPUT# on page 1-76 Inverts the output X-BAR signal. off

1 Configuration Parameters

1-36

CLB X-BAR

Parameter Description Default Value
AUXSIG# MUX select on page
1-83

Select the MUX to map the
signal to AUXSIG# MUX.

Disable all

Select MUX input on page 1-83 Select the input to the MUX
selected for AUXSIG# MUX
select.

X:Disable

AUXSIG# MUX (MUX 0->31) on
page 1-83

Indicates the input signal
selected for each AUXSIG MUX.

XXXXXXXXXXXXXXXXXXXXXXX

Reset AUXSIG# MUX on page
1-83

Option to reset the MUX inputs
selected.

Invert AUXSIG# on page 1-83 Inverts the CLB X-BAR signal or
Inverts the AUXSIG# signal.

off

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-37

CLB

Parameter Description Default Value
Enable CLB Tile # on page 1-
93

Select this option to enable the
CLB tile.

off

Tile # Name on page 1-93 Specify the tile name. This tile
name will be used to generate
the required function
declaration and calling the
function for CLB tile
configuration file (clb_config.c
and clb_config.h) generated
using CLB tool. The tile names
entered here should be an exact
match with the tile name set in
CLB tool to generate the file.

TILE#

IN# MUX selection on page 1-
93

Configure the signal source type
for the IN# mux. The type of
signal can be global inputs, local
inputs and GPREG.

Global inputs

Input on page 1-93 Configure the peripheral signal
as input to the CLB tile.

ePWM#A

Input filtering on page 1-93 Configure the type of input
filtering for the signal type
Global inputs and Local inputs.
This option will be disabled for
GPREG as it is not applicable.

No filtering

Enable sync on page 1-93 Configure the synchronization
option (SYNC) for the Global
inputs and Local inputs IN#
mux selection only. This option
is not applicable for GPREG
type and will be disabled for the
same.

off

Route OUT# signal to on page
1-93

Option to enable routing the
CLB output signal to the
peripheral instead of the default
peripheral signal. Each CLB
output signal passes through an
external multiplexer that
intersects a specific peripheral
signal. If the options in this
parameter is enabled it will
route the CLB output for the
specific peripheral instead of
the original peripheral signal.

1 Configuration Parameters

1-38

Parameter Description Default Value
CLB configuration header file
(clb_config.h) on page 1-93

Provide the paths for the CLB
configuration header file
clb_config.h generated using
CLB tool. This file holds the
required function declarations
and headers used to configure
the CLB tile.

clb_config.h

CLB configuration source file
(clb_config.c) on page 1-93

Provide the paths for the CLB
configuration source file
clb_config.c generated using
CLB tool. This file holds the
required function definitions
used to configure the CLB tile.

clb_config.c

Browse on page 1-93 Click this button to browse the
path for the file selection.

Edit on page 1-93 Click this button to open the
existing file for editing in
MATLAB® editor.

For more information on selecting a hardware board and general configuration settings, see
“Hardware Implementation Pane”.

 Model Configuration Parameters for Texas Instruments C2000 Processors

1-39

Model Configuration Parameters for Texas Instruments F2838x
(ARM Cortex-M4)

To configure hardware parameters for Texas Instruments F2838x ARM Cortex-M4 processor:

1 In the Simulink Editor, select Modeling > Model Settings.
2 In the Configuration Parameter dialog box, click Hardware Implementation.

3 Set the Hardware board parameter to your TI F2838x and select the processing unit as
CortexM4.

4 Click Apply.

Hardware Board Settings
For each hardware board you select, you can configure the board parameters according to your
requirements.

1 Configuration Parameters

1-40

Build Options

Parameter Description Default Value
Build action on page 1-112 Define how Embedded Coder

responds when you build your
model.

Build, load, and run

Device name on page 1-112 Select your device from the
selected processor family.

F28388D

Disable parallel build on page 1-
112

Select to compile the generated
code and driver source codes in
parallel order for faster build
and deployment speed.

off

Boot From Flash (stand alone
execution) on page 1-112

Specify if the application loads
to the flash memory.

enabled

Use custom linker command file
on page 1-112

Indicates that the custom linker
command file must be used
during the build action.

off

Linker command file on page 1-
112

The path to the memory
description file required during
linking.

CCS hardware configuration file
on page 1-112

The Code Composer Studio file
required for downloading the
application on the hardware.

Clocking

Parameter Description Default Value
Enter the 'Connectivity
Manager (ARM Cortex-M) clock
in MHz' value calculated in
C28x CPU1 on page 1-114

Value of this parameter must be
same as the value of the
parameter 'Connectivity
Manager (ARM Cortex-M) clock
in MHz' (auto calculated in
CPU1 model).

100

 Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)

1-41

UART

Parameter Description Default Value
Enable UART Loopback on page
1-117

Select this check box to enable
data transmission from Tx to Rx
buffer.

Not selected

Desired Baud rate (in bits/sec)
on page 1-117

Specify the desired baud rate of
the data transmission.

115200

Closest Achievable Baud rate (in
bits/sec) on page 1-117

The value in this parameter is
calculated based on the desired
baud rate that you specify and
the system clock frequency.

115207

Number of stop bits on page 1-
117

Select the number of stop bits
used to indicate the end of a
byte data transmission.

1

Parity mode on page 1-117 Select a parity mode that is
added at the end of a binary
data for error detection.

None

Pin assignment(Tx) on page 1-
117

Select a GPIO pin as the UART
pin for data transmission.

GPIO84

Pin assignment(Rx) on page 1-
117

Select a GPIO pin as UART pin
for data reception.

GPIO85

Enable receive interrupt on
page 1-117

This parameter is enabled by
default for updating DMA
configuration after data receive.

Selected

Enable transmit interrupt on
page 1-117

Select this parameter to trigger
an ISR from an UART Transmit
block. This will trigger UART
interrupt when DMA copies any
data to FIFO.

Not selected

1 Configuration Parameters

1-42

Ethernet

Parameter Description Default Value
Enable DHCP for local IP
address assignment on page 1-
115

Select this parameter to
configure the board to get an IP
address from the local DHCP
server on the network.

Not selected

Local IP address on page 1-115 Select this parameter to set the
IP address of the board.

192.168.1.8

Subnet mask on page 1-115 Specify the subnet mask for the
board.

255.255.255.0

Gateway on page 1-115 Set the serial gateway to the
gateway required to access the
target computer.

192.168.1.1

MAC address on page 1-115 Specify the media access
control (MAC) address, the
physical network address of the
board.

A8-63-F2-00-00-80

Overrun detection

Parameter Description Default Value
Enable overrun detection on
page 1-71

Enable to notify when task
overrun occurs.

off

Set/Clear/toggle GPIO on page
1-71

Enable to select GPIO action. on

Digital output pin to set an
overrun on page 1-71

Specify the GPIO number of a
digital output.

34

GPIO set mode on page 1-71 Select the GPIO mode. Set
Additional notification option on
page 1-71

Select the option to notify when
task overrun occurs.

None

Interrupt number on page 1-71 Specify the interrupt number to
trigger on overrun.

1

Name of the function on page 1-
71

Specify the name of the C
function to call on overrun.

C2000_OverunFunction

 Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)

1-43

MCAN

Parameter Description Default Value
Protocol mode on page 1-96 Select the CAN type. Classic

CAN or CAN-FD.
CAN-FD

MCAN module clock frequency
(=connectivity manager (ARM
Cortex-M) clock)in MHz on page
1-96

Displays the MCAN module
clock frequency in MHz.

100

MCAN bit clock frequency
(MCAN module clock freq/4) in
MHz on page 1-96

Displays the MCAN bit clock
frequency in MHz.

25

Nominal bit rate prescaler
(NBRP: 1 to 512) on page 1-96

Nominal bit rate prescaler. The
value by which the oscillator
frequency is divided for
generating the bit time quanta.

1

Nominal time segment 1
(NTSEG1: 2 to 256) on page 1-
96

Nominal time segment before
sample point.

22

Nominal time segment 2
(NTSEG2: 2 to 128) on page 1-
96

Nominal time segment after
sample point.

2

Closest achievable nominal
baud rate (MCAN bit clock/
NBRP/(NTSEG1+NTSEG2)) in
bits/sec on page 1-96

Closest achievable nominal
MCAN baud rate in bits/sec.

1000000

Nominal re-synchronization
jump width (NSJW: 1 to 128) on
page 1-96

Nominal Resynchronization
Jump Width (NSJW).

1

Enable bit rate switching on
page 1-96

Enables bit rate switching
between nominal bit rate and
data bit rate.

off

Data bit rate prescaler (DBRP: 1
to 32) on page 1-96

Data Bit Rate Prescaler (DBRP).
The value by which the
oscillator frequency is divided
for generating the bit time
quanta.

1

Data time segment 1 (DTSEG1:
1 to 32) on page 1-96

Data time segment before
sample point (DTSEG1).

22

Data time segment 2 (DTSEG2:
1 to 16) on page 1-96

Data time segment after sample
point (DTSEG2).

2

Data baud rate (MCAN bit
clock/DBRP/
(DTSEG1+DTSEG2)) in bits/sec
on page 1-96

Closest achievable MCAN data
baud rate calculated based on
data parameters and given
formula.

1000000

1 Configuration Parameters

1-44

Parameter Description Default Value
Data re-synchronization jump
width (DSJW: 1 to 16)) on page
1-96

Data resynchronization jump
width (DSJW).

1

Mode on page 1-96 Select the operating mode for
MCAN.

Normal

Pin assignment(Tx) on page 1-
96

Select a GPIO pin for the MCAN
data transmission.

GPIO 31

Pin assignment(Rx) on page 1-
96

Select a GPIO pin for the MCAN
data reception.

GPIO 30

Transmission mode on page 1-
96

Select the mode of transmission. FIFO

Enable blocking mode for Rx
FIFO 0 on page 1-96

Enable blocking mode for FIFO
0 data reception.

off

Enable blocking mode for Rx
FIFO 1 on page 1-96

Enable blocking mode for FIFO
1 data reception.

off

Update global filter
configuration on page 1-96

Enable this parameter to update
standard and extended filter
IDs.

off

Reject remote frames standard
on page 1-96

Rejects all remote frames with
11-bit standard IDs when
enabled else the remote frames
will be filtered as per the
settings from Update standard
filter elements.

on

Reject remote frames extended
on page 1-96

Rejects all remote frames with
29-bit extended IDs when
enabled else the remote frames
will be filtered as per the
settings from Update extended
filter elements.

on

Non-matching frames extended
on page 1-96

Defines how received messages
with 11-bit standard IDs that do
not match any element from
Update standard filter
elements are treated.

Reject

Non-matching frames standard
on page 1-96

Defines how received messages
with 29-bit extended IDs that do
not match any element from
Update extended filter
elements are treated.

Reject

Update standard filter elements
on page 1-96

Enable this parameter to update
the standard 11bit ID filter
elements parameters.

off

Select standard filter on page 1-
96

Select the standard message ID
filter elements.

0

 Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)

1-45

Parameter Description Default Value
Filter # configuration on page
1-96

Select the standard filter
element configuration.

Disable filter element

Filter # type (filter type will be
ignored if filter configuration is
stored into Rx buffer) on page 1-
96

Select the standard filter type. Classic ID and mask
filter (ID1 = filter,
ID2 = mask)

Filter # ID1 on page 1-96 Specify the standard Filter ID 1. 0
Filter # ID2 on page 1-96 Specify the standard Filter ID 2. 0
Update extended filter elements
on page 1-96

Enable to update the extended
filter elements.

off

Select extended filter on page 1-
96

Select the extended message ID
filter elements.

0

Filter # configuration on page
1-96

Select extended filter element
configuration.

Disable filter element

Filter # type (filter type will be
ignored if filter configuration is
stored into Rx buffer) on page 1-
96

Select the extended filter type. Classic ID and mask
filter (ID1 = filter,
ID2 = mask)

Filter # ID1 on page 1-96 Specify the first ID of extended
ID filter element.

0

Filter # ID2 on page 1-96 Specify the second ID of
extended ID filter element.

0

Display configured extended
and standard filters elements in
command window on page 1-
96

Click on Display configured
extended and standard filters
elements in command window
button to view the configured
standard and extended filter
elements in MATLAB command
window.

Reset standard filters
configurations on page 1-96

Click Reset standard filters
configurations to reset the
configured standard filter
configurations.

Reset extended filters
configurations on page 1-96

Click Reset extended filters
configurations to reset the
configured extended filter
configurations.

Configure memory on page 1-
96

Select to configure the memory
and its parameters.

off

Maximum element size in TX
FIFO (in bytes) on page 1-96

Select the maximum data size of
CAN FD message in transmit
FIFO.

64

1 Configuration Parameters

1-46

Parameter Description Default Value
Maximum element size in RX
FIFO 0 (in bytes) on page 1-96

Select the maximum data size of
CAN FD message in receive
FIFO 0.

64

Maximum element size in RX
FIFO 1 (in bytes) on page 1-96

Select the maximum data size of
CAN FD message in receive
FIFO 1.

64

Maximum element size in RX
buffer (in bytes) on page 1-96

Select the maximum data size of
CAN FD message in receive
buffer.

64

Number of elements in TX FIFO
Queue on page 1-96

Select the number of elements
(data + header CAN FD
message) in transmit FIFO/
Queue.

32

Number of elements in RX FIFO
0 on page 1-96

Select the number of elements
(data + header CAN FD
message) in receive FIFO 0.

Auto allocate

Number of elements in RX FIFO
1 on page 1-96

Select the number of elements
(data + header CAN FD
message) in receive FIFO 1.

Auto allocate

Validate memory on page 1-96 Click Validate memory button
to validate all the memory
configurations.

Configure receive interrupt
sources on page 1-96

Select this option to display
receive interrupt sources for
configuration.

off

Configure RX buffer interrupt
sources on page 1-96

Select this option to display
buffer interrupt sources for
configuration.

off

Dedicated RX buffer message on
page 1-96

Select the dedicated interrupt
line for receive buffer message.

Disable

High priority message on page
1-96

Select the dedicated interrupt
line for high priority message.

Disable

Configure RX FIFO 0 interrupt
sources on page 1-96

Select this option to display
receive FIFO 0 interrupt
sources for configuration.

off

RX FIFO 0 new message on
page 1-96

Select the interrupt line for
receive FIFO 0 new message.

Disable

RX FIFO 0 full on page 1-96 Select the interrupt line for
receive FIFO 0 full.

Disable

RX FIFO 0 message lost on page
1-96

Select the interrupt line for
receive FIFO 0 message lost.

Disable

RX FIFO 0 watermark on page
1-96

Select the interrupt line for
receive FIFO 0 watermark.

Disable

 Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)

1-47

Parameter Description Default Value
Configure RX FIFO 1 interrupt
sources on page 1-96

Select this option to display
receive FIFO 1 interrupt
sources for configuration.

off

RX FIFO 1 new message on
page 1-96

Select the interrupt line for
receive FIFO 1 new message.

Disable

RX FIFO 1 full on page 1-96 Select the interrupt line for
receive FIFO 1 full.

Disable

RX FIFO 1 message lost on page
1-96

Select the interrupt line for
receive FIFO 1 message lost.

Disable

RX FIFO 1 watermark on page
1-96

Select the interrupt line for
receive FIFO 1 watermark.

Disable

Configure transmit interrupt
sources on page 1-96

Select this option to display
transmit interrupt sources for
configuration.

off

Configure TX FIFO interrupt
sources on page 1-96

Enable to configure the transmit
FIFO interrupt sources.

off

Transmission complete on page
1-96

Select the transmission
interrupt line for transfer
complete.

Disable

Transmission cancellation finish
on page 1-96

Select the transmission
interrupt line for transfer
cancellation finish.

Disable

TX FIFO empty on page 1-96 Select the transmission
interrupt line for TX FIFO
empty.

Disable

Configure TX event FIFO
interrupt sources on page 1-96

Select this option to display
transmit event FIFO interrupt
sources for configuration.

off

TX event FIFO new entry on
page 1-96

Select the transmission
interrupt line for TX event FIFO
new entry.

Disable

TX event FIFO element lost on
page 1-96

Select the transmission
interrupt line for TX event FIFO
element lost.

Disable

TX event FIFO full on page 1-
96

Select the transmission
interrupt line for TX event FIFO
full.

Disable

TX event FIFO watermark on
page 1-96

Select the transmission
interrupt line for TX event FIFO
watermark.

Disable

Configure other interrupt
sources on page 1-96

Select this option to display
other interrupt sources for
configuration.

off

1 Configuration Parameters

1-48

Parameter Description Default Value
Timestamp wraparound on page
1-96

Select the interrupt line for
timestamp wraparound
interrupt.

Disable

Timeout occurred on page 1-96 Select the interrupt line for
timeout occurred interrupt.

Disable

Error logging overflow on page
1-96

Select the interrupt line for
error logging overflow interrupt.

Disable

Warning status on page 1-96 Select the interrupt line for
warning status interrupt.

Disable

Watchdog event on page 1-96 Select the interrupt line for
watchdog event interrupt.

Disable

Data protocol error on page 1-
96

Select the interrupt line for data
protocol error interrupt.

Disable

Message RAM access failure on
page 1-96

Select the interrupt line for
message RAM access failure
interrupt.

Disable

Bit error uncorrected on page 1-
96

Select the interrupt line for bit
error uncorrected interrupt.

Disable

Error passive status on page 1-
96

Select the interrupt line for
error passive status interrupt.

Disable

Bus off status on page 1-96 Select the interrupt line for bus
off status interrupt.

Disable

Arbitration protocol error on
page 1-96

Select the interrupt line for
arbitration protocol error
interrupt.

Disable

Reserved address access on
page 1-96

Select the interrupt line for
reserved address access
interrupt.

Disable

PIL

Parameter Description Default Value
“PIL” on page 1-109 Select the type of

communication interface to run
your model.

Serial

Serial port in MATLAB
preferences on page 1-109

Select the COM port used by the
target hardware.

COM#

PIL Baud rate (UART Baud rate)
on page 1-109

PIL baud rate used by the
target. This is based on the
baud rate that you specify in the
Desired Baud rate (in bits/
sec) parameter for UART0.

 Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)

1-49

External Mode

Parameter Description Default Value
Communication interface on
page 1-107

Select the type of
communication interface to run
your model in external mode.

XCP on Serial

Serial port in MATLAB
preferences on page 1-107

Select the COM port used by the
target hardware.

Verbose on page 1-107 Select to view the external
mode execution progress and
updates in the Diagnostic
Viewer or in the MATLAB
command window.

off

Set logging buffer size
automatically on page 1-107

Select to automatically set the
number of bytes to preallocate
for the buffer in the hardware
during simulation.

on

Maximum number of contiguous
samples on page 1-107

Specify the maximum number of
contiguous samples to be
packed in a single packet.

8

For more information on selecting a hardware blockset and general configuration settings, see
“Hardware Implementation Pane”.

1 Configuration Parameters

1-50

Model Configuration Parameters for Texas Instruments
Concerto F28M3x (ARM Cortex-M3)

Hardware Implementation Pane Overview

1 In the Simulink Editor, select Simulation > Model Configuration Parameters.
2 In the Configuration Parameter dialog box, click Hardware Implementation.
3 Set the Hardware board parameter to a value such as TI Concerto F28M36x (ARM Cortex-

M3).
4 The parameter values under Hardware board settings are automatically populated to their

default values.

You can optionally adjust these parameters for your particular use case.
5 Click Apply to apply the changes.

For more information on selecting a hardware blockset and general configuration settings, see
“Hardware Implementation Pane”.

 Model Configuration Parameters for Texas Instruments Concerto F28M3x (ARM Cortex-M3)

1-51

Scheduler Options

Parameter Description Default Value
Base rate trigger on page 1-168 Set the static priority of the

base rate task in the operating
system.

Timer 0

C28x / ARM Cortex-M3 - Build options
C28x / ARM Cortex-M3 - Build options

Parameter Description Default Value
“Build action” on page 1-57 The option to specify how the

build process should take place
during code generation.

Build, load and run

“Device name” on page 1-57 The option to select a particular
device from the selected
processor family in the Target
hardware parameter on the
Code Generation pane.

F28M36P63C

“Disable parallel build” on page
1-57

Select to compile the generated
code and driver source codes in
parallel order for faster build
and deployment speed.

off

“Boot From Flash (stand alone
execution)” on page 1-57

The option to specify if the
application has to load to the
flash. If you do not select this
option, the application loads to
the RAM.

Selected

“Use custom linker command
file” on page 1-57

The option to indicate that the
custom linker command file
must be used during the build
action. Select this option, if you
have your own custom linker
file, which you can specify in
Linker command file parameter.
If you do not select this option,
based on the device you have
selected, a default custom linker
command file will be used.

Selected

“Linker command file” on page
1-57

The path to memory description
file that is required during
linking. For each family of TI
processor selected under
‘Target Hardware’, one linker
command file will be selected
automatically.

$(TARGET_ROOT)\src
\c28M35H52C.cmd

1 Configuration Parameters

1-52

Parameter Description Default Value
“CCS hardware configuration
file” on page 1-58

The Code Composer Studio file
required for downloading the
application on the hardware.
Select one of the .ccxml files
from the folder ‘CCS_Config’
folder under blockset
installation folder.

$(TARGET_ROOT)/CCS_Config/
f28M35x.ccxml

M3x-Clocking
Clocking

Parameter Description Default Value
“Desired C28x CPU clock in
MHz” on page 1-59

Specify the expected C28x CPU
clock frequency and match the
same in your C28x Model.

150

“Oscillator clock (OSCCLK)
frequency in MHz” on page 1-
59

Specify the frequency of the
crystal oscillator used in the
board.

20

“Auto set PLL based on OSCCLK
and CPU clock” on page 1-59

The option that helps you to set
the PLL control register value
automatically.

Selected

“System PLL multiplier
(SYSPLLMULT)[1–127.75]” on
page 1-59

Specify the system PLL
multiplier. You can specify a
value in this parameter if Auto
set PLL based on OSCCLK
and CPU clock is not selected.

15

“System clock divider
(SYSDIVSEL)” on page 1-59

If you select the Auto set PLL
based on OSCCLK and CPU
clock check box, the auto
calculated clock divider value
achieves the specified CPU
Clock value based on the
Oscillator clock frequency.
Otherwise, you can select a
value for Clock divider
(SYSDIVSEL).

1

“Achievable C28x SYSCLK in
MHz = (OSCCLK *
SYSPLLMULT/ 2/ SYSDIVSEL)”
on page 1-59

The auto calculated feedback
value that matches most closely
to the desired CPU Clock value
on the board, based on the
values of OSCCLK,
SYSPLLMULT, and the
SYSDIVSEL.

150

“M3 System clock divider
(M3SSDIVSEL)” on page 1-59

Select a value from the options
for M3 system clock divider.

2

 Model Configuration Parameters for Texas Instruments Concerto F28M3x (ARM Cortex-M3)

1-53

Parameter Description Default Value
“M3 SYSCLK in MHz =
(OSCCLK * SYSPLLMULT/ 2/
SYSDIVSEL/ M3SSDIVSEL)” on
page 1-60

This is the achievable M3
system clock frequency.

75

M3x-GPIO A–D
Parameter Description Default Value
“Enable GPIO port A” on page 1-
61

Select this option to enable
GPIO port A.

Selected

“Show GPIOA settings for” on
page 1-61

Select GPIO pins from port A for
which you want to set the CPU
core and the pin type.

Pin 0

“Select the CPU core which
controls Pin #” on page 1-61

Select the CPU core for the
selected GPIO pin.

“Select the pin type for Pin 0”
on page 1-61

Select the pull–up and the open–
drain options for the selected
GPIO pin.

M3x-UART0–4
Parameter Description Default Value
“Enable UART Loopback” on
page 1-62

Select this check box to enable
data transmission from Tx to Rx
buffer.

Not selected

“Enable M3 UART4 to C28 SCI-
A Loopback” on page 1-62

Select this check box to enable
data transmission from M3
UART4 to C28 SCI-A.

Not selected

“Desired Baud rate (in bits/sec)”
on page 1-62

Specify the desired baud rate of
the data transmission.

115200

“Closest Achievable Baud rate
(in bits/sec)” on page 1-62

The value in this parameter is
calculated based on the desired
baud rate that you specify and
the system clock frequency.

115207

“Number of stop bits” on page
1-62

Select the number of stop bits
used to indicate the end of a
byte data transmission. The
options available:

1

“Parity mode” on page 1-62 Select a parity mode that is
added at the end of a binary
data for error detection.

None

1 Configuration Parameters

1-54

Parameter Description Default Value
“Pin assignment(Tx)” on page 1-
63

Select a GPIO pin as the UART
pin for data transmission. By
default, the GPIO29 is
hardwired as the Tx GPIO to the
FTDI chip.

PE5_GPIO29

“Pin assignment(Rx)” on page 1-
63

Select a GPIO pin as UART pin
for data reception.

PE4_GPIO28

“Enable Transmit Interrupt” on
page 1-63

Select this check box to enable
the transmit interrupt. This will
trigger UART interrupt when
DMA copies any data to FIFO.

Not selected

“Enable Receive Interrupt” on
page 1-63

This check box by default is
enabled for communication with
external mode over serial.

Selected

M3x-Ethernet
Parameter Description Default Value
“Enable DHCP for local IP
address assignment” on page 1-
64

Select this check box to
configure the board to get an IP
address from the
local DHCP server on the
network.

Selected

“Local IP address” on page 1-
64

Enter the IP address of the
board.

192.168.1.10

“Subnet mask” on page 1-64 Enter the subnet mask for the
board. A subnet mask divides an
IP address into network address
and a host address.

255.255.255.0

“Ethernet local host name” on
page 1-64

Enter the local host name. Concerto-M3

“MAC address” on page 1-64 Enter the MAC address. A8-63-F2-80-90-80

M3x-PIL
Parameter Description Default Value
“PIL communication interface”
on page 1-65

Select the communication
interface for PIL. The available
options are: Serial and
TCP/IP.

Serial

“Serial port” on page 1-65 Enter the serial port used by the
target hardware.

COM1

 Model Configuration Parameters for Texas Instruments Concerto F28M3x (ARM Cortex-M3)

1-55

Parameter Description Default Value
“PIL Baud Rate (UART) Baud
rate)” on page 1-65

This is the PIL baud rate used
by the target. This is based on
the baud rate that you specify in
the Desired Baud rate (in
bits/sec) parameter for UART0.

115207

“Ethernet port” on page 1-65 This is the Ethernet port used
for PIL communication.

17725

External mode
Parameter Description Default Value
“Communication interface” on
page 1-66

Use the ‘serial’ option to run
your model in the External
mode with serial
communication.

Serial

“Serial port” on page 1-66 Enter the serial port used by the
target hardware.

COM4

“Verbose” on page 1-66 Select this check box to view
the External Mode execution
progress and updates in the
Diagnostic Viewer or in the
MATLAB command window.

Not selected

SD Card Logging
Parameter Description Default Value
Enable MAT-file logging on SD
card on page 1-184

Enables the MAT-file logging for
SD card.

off

SPI module on page 1-184 Select the desired interface on
which the SD card is connected
to hardware board.

SPI baud rate on page 1-184 Select the desired option for the
SPI interface used by the SD
card.

Maximum achievable
supported by the
inserted SD Card

For information on other configuration options, see “Model Configuration Parameters for Texas
Instruments C2000 Processors” on page 1-2.

1 Configuration Parameters

1-56

C28x / ARM Cortex-M3 - Build options

Use the build options to specify how the build process should take place during code generation.

Build action
The option to specify if you want only ‘build’ or ‘build, load, and run’ action during the build process.
The build, load and run option is supported only for TI Code Composer Studio v5 (C2000), v6
(C2000), and v5(ARM)/v6(ARM) tool chain.

If you select build, load, and run option, you must provide the required CCS hardware
configuration file.

Device name
The option to select a particular device from the selected processor family in the Target hardware
parameter on the Code Generation pane.

Disable parallel build
• on – When you select this option, the blockset compiles generated code and driver source codes in

sequential order.
• off – When you clear the selection, the blockset compiles generated code and driver source codes

parallely. Parallel execution reduces the time taken to build the model.

Boot From Flash (stand alone execution)
The option to specify if the application has to load to the flash. If you do not select this option, the
application loads to the RAM.

Use custom linker command file
The option to indicate that the custom linker command file must be used during the build action.
Select this option, if you have your own custom linker file, which you can specify in Linker command
file parameter. If you do not select this option, based on the device you have selected, a default
custom linker command file will be used.

Linker command file
The path to memory description file that is required during linking. For each family of TI processor
selected under ‘Target Hardware’, one linker command file will be selected automatically.

For different variant of processor, you can select from the ‘src’ folder inside the blockset installation
path. You can also create custom linker command file and select the file path using Browse.

 C28x / ARM Cortex-M3 - Build options

1-57

CCS hardware configuration file
The Code Composer Studio file required for downloading the application on the hardware. Select one
of the .ccxml files from the folder ‘CCS_Config’ folder under blockset installation folder.

Instead, you can also create your own .ccxml file.

Select the file you created using Browse.

The .ccxml files provided with the blockset are as follows:

• f28M35x.ccxml – Texas Instruments XDS100v2 USB Emulator_0
• f28M36x.ccxml – Texas Instruments XDS100v2 USB Emulator_0

1 Configuration Parameters

1-58

M3x-Clocking

Desired C28x CPU clock in MHz
Specify the expected C28x CPU clock frequency and match the same in your C28x Model. The C28x
CLOCK is the same as PLLSYSCLK. The M3 Clock is a factor of M3SSDIVSEL divided by the
PLLSYSCLK.

Oscillator clock (OSCCLK) frequency in MHz
Specify the frequency of the crystal oscillator used in the board. In case of Concerto the crystal
oscillator is external to the processor.

Auto set PLL based on OSCCLK and CPU clock
The option that helps you to set the PLL control register value automatically. When you select this
check box, the values in the SYSPLLMULT, SYSDIVSEL , and the Achievable C28x SYSCLK in MHz
parameters are automatically calculated based on the Desired C28x CPU Clock value entered on
the Board.

System PLL multiplier (SYSPLLMULT)[1–127.75]
Specify the system PLL multiplier. You can specify a value in this parameter if Auto set PLL based
on OSCCLK and CPU clock is not selected. The PLL multiplier is a 9 bit field with 7 bits of the
SYSPLLMULT register comprising of the integer portion and the remaining 2 bits for the fractional
portion. You can enter a value in the range between 0 to 127.75 with multiples of 0.25 for fractional
portion of the value.

System clock divider (SYSDIVSEL)
If you select the Auto set PLL based on OSCCLK and CPU clock check box, the auto calculated
clock divider value achieves the specified CPU Clock value based on the Oscillator clock frequency.
Otherwise, you can select a value for Clock divider (SYSDIVSEL).

Achievable C28x SYSCLK in MHz = (OSCCLK * SYSPLLMULT/ 2/
SYSDIVSEL)

The auto calculated feedback value that matches most closely to the desired CPU Clock value on the
board, based on the values of OSCCLK, SYSPLLMULT, and the SYSDIVSEL.

M3 System clock divider (M3SSDIVSEL)
Select a value from the options for M3 system clock divider. The C28 CLKIN clock is divided by the
selected value to generate the M3 CPU clock.

 M3x-Clocking

1-59

M3 SYSCLK in MHz = (OSCCLK * SYSPLLMULT/ 2/ SYSDIVSEL/
M3SSDIVSEL)

This is the achievable M3 system clock frequency. This is calculated based on the values of OSCCLK,
SYSPLLMULT, SYSDIVSEL, and M3SSDIVSEL.

1 Configuration Parameters

1-60

M3x-GPIO A–D

Enable GPIO port A
Select this option to enable GPIO port A.

Show GPIOA settings for
Select GPIO pins from port A for which you want to set the CPU core and the pin type.

Select the CPU core which controls Pin #
• Select the CPU core for the selected GPIO pin.

• Auto detect M3 usage, otherwise set to C28x — This default option detects, if you have used
the selected GPIO pin for the M3 block in your model.

• M3 — Select this option to assign the GPIO pin to the M3 CPU.
• C28x — Select this option to assign the GPIO pin to the C28x CPU.

Select the pin type for Pin 0
Select the pull–up and the open–drain options for the selected GPIO pin.

Note The above parameter descriptions are also applicable for all the GPIO ports.

 M3x-GPIO A–D

1-61

M3x-UART0–4

Enable UART Loopback
Select this check box to enable data transmission from Tx to Rx buffer. However, selecting this option
does not ensure that the data is present in the GPIO MUX.

Enable M3 UART4 to C28 SCI-A Loopback
Select this check box to enable data transmission from M3 UART4 to C28 SCI-A. This option is
available only for UART4 parameter.

Desired Baud rate (in bits/sec)
Specify the desired baud rate of the data transmission.

Closest Achievable Baud rate (in bits/sec)
The value in this parameter is calculated based on the desired baud rate that you specify and the
system clock frequency. This baud rate is used for the data transfer.

Number of stop bits
Select the number of stop bits used to indicate the end of a byte data transmission. The options
available:

• 1 – Select this option to indicate there is 1 stop bit at the end of a byte data transmission.
• 2 – Select this option to indicate there are 2 stop bits at the end of a byte data transmission.

Parity mode
• Select a parity mode that is added at the end of a binary data for error detection.

The options available are:

• None — Select this option when no parity is used. This is the default option.
• Odd — Select this option to indicate that odd parity is used for data transmission.

In odd parity mode, the parity bit is set to ‘1’ if the sum of bits with the value ‘1’ is even and
the parity bit is set to ‘0’, if the sum of bits with the value ‘1’ is odd.

• Even — Select this option to indicate that even parity is used for data transmission.

In even parity mode, the parity bit is set to ‘1’, if the sum of bits with the value ‘1’ is odd and
the parity bit is set to ‘0’, if the sum of bits with the value ‘1’ is even.

• One — Select this option to indicate that the parity bit is always ‘1’.
• Zero — Select this option to indicate that the parity bit is always ‘0’.

1 Configuration Parameters

1-62

Pin assignment(Tx)
Select a GPIO pin as the UART pin for data transmission. By default, the GPIO29 is hardwired as the
Tx GPIO to the FTDI chip.

Pin assignment(Rx)
Select a GPIO pin as UART pin for data reception. By default, the GPIO28 is hardwired as the Rx
GPIO to the FTDI chip.

Enable Transmit Interrupt
Select this check box to enable the transmit interrupt. This will trigger UART interrupt when DMA
copies any data to FIFO.

Enable Receive Interrupt
This check box by default is enabled for communication with external mode over serial.

 M3x-UART0–4

1-63

M3x-Ethernet

Enable DHCP for local IP address assignment
Select this check box to configure the board to get an IP address from the local DHCP server on the
network.

Local IP address
Enter the IP address of the board.

Subnet mask
Enter the subnet mask for the board. A subnet mask divides an IP address into network address and a
host address.

Ethernet local host name
Enter the local host name.

MAC address
Enter the MAC address.

1 Configuration Parameters

1-64

M3x-PIL

PIL communication interface
Select the communication interface for PIL. The available options are: Serial and TCP/IP.

Serial port
Enter the serial port used by the target hardware.

PIL Baud Rate (UART) Baud rate)
This is the PIL baud rate used by the target. This is based on the baud rate that you specify in the
Desired Baud rate (in bits/sec) parameter for UART0.

Ethernet port
This is the Ethernet port used for PIL communication. This parameter appears only when you select
TCP/IP option in PIL communication interface parameter.

 M3x-PIL

1-65

External mode

Communication interface
Use the ‘serial’ option to run your model in the External mode with serial communication.

Serial port
Enter the serial port used by the target hardware.

Verbose
Select this check box to view the External Mode execution progress and updates in the Diagnostic
Viewer or in the MATLAB command window.

1 Configuration Parameters

1-66

Serial Configuration for External Mode and PIL
To prepare your model for external mode or PIL with serial communication:

1 In the Configuration Parameters dialog box, select Model Configuration Parameters >
Hardware Implementation.

2 Select a C2000 processor from the Hardware Implementation > Hardware board drop-down
list. For more, see

3 Under Target Hardware Resources, select External mode/PIL.
4 In Communication interface drop-down list, select serial for Classic External mode or XCP

on Serial for External mode over XCP.

Note For PIL, the communication interface is only with serial.
5 Select SCI module under Target hardware resource in Model Configuration Parameters >

Hardware Implementation > Hardware board.
6 For the selected SCI module, configure the additional parameters Desired baud rate in bits/

sec, Pin assignment(Tx) and Pin assignment(Rx).

Note

• By default SCI_A module is selected for Controlcards and Launchpads. For custom boards, if
you are using different serial module to connect FTDI then select the appropriate serial
module.

• The default baud for Controlcards is 115200 bits/sec. For better performance, you may
increase the baud to a value that your hardware board permits.

7 Select the corresponding COM port that the target hardware uses from the drop-down. The COM
port value will be saved as Serial port in MATLAB preference for a given target and not on a
model. Click Refresh to see the latest value in MATLAB preference and updated list from device
manager.

 Serial Configuration for External Mode and PIL

1-67

To see the list of available COM ports on your computer, select Start > Control Panel > Device
Manager > Ports (COM & LPT)

1 Configuration Parameters

1-68

You can also set the serial port in MATLAB preferences for the given hardware board using the
MATLAB command:

codertarget.tic2000.setSerialPortPreferences(Hardware board,
 CPU value, Serial port)

Here CPU value is optional argument.
8 Make sure that the Verbose check box is selected to view the external mode execution progress

and updates in the Diagnostic Viewer or in the Command Window.
9 Select Use a dedicated timer to improve time stamp accuracy parameter to log hardware

time data inside ISR at ISR trigger rate and idle task at trigger rate for XCP External mode for
Serial and CAN. For more information, see “External Mode” on page 1-180.

Your model is now ready to perform Monitor and Tune action (External Mode) over serial
communication.

See Also
“Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 Serial Configuration for External Mode and PIL

1-69

Analog subsystem

Analog subsystem: Analog subsystem is used to configure the flexible voltage references used by
the analog modules i.e. ADC and DAC in the device. VREFHIx pin voltage can be driven in externally
or can be generated by an internal bandgap voltage reference. The internal voltage reference range
can be selected to be 0V to 3.3V or 0V to 2.5V

Ganged pins: Multiple VREFHI pins are ganged together in lower pin-count packages i.e. due to pin
count restrictions of the device there is sharing of analog VREF pins among ADCs. In order to avoid
potential pin contention between Internal vs External reference modes between ADCs, the reference
voltage settings for the ganged pins should always be configured to the same setting. VREFHIB and
VREFHIC are always ganged together for F28004x.

External reference for VREFHIx
By default, an internally generated band gap voltage reference supplies the ADC logic. However,
depending on application requirements, you can enable the external reference so that the ADC
logic uses an external voltage reference instead.

VREFHIx
The ADC logic uses internal bandgap voltage reference range to be 0V to 3.3V or 0V to 2.5V.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-70

Overrun detection

You can configure a Simulink model running on the target hardware to detect and notify you when a
task overrun occurs. A task overrun occurs if the target hardware is still performing one instance of a
task when the next instance of that task is scheduled to begin.

You can fix overruns by decreasing the frequency with which tasks are scheduled to run, and/or by
reducing the number of tasks defined by your model.

If those solutions does not fix the task overrun condition, and you are using external mode or
profiling, consider disabling external mode or profiling as both introduces additional code overhead.

Enable overrun detection
Enable to detect and notify when task overrun occurs.

Set/Clear/Toggle GPIO
Enable to select the General Purpose Input/Output (GPIO) action to notify on overrun.

Digital output pin to set an overrun
Specify the pin number of the digital output(GPIO) to notify on overrun.

Set GPIO mode
Select either Set, Clear, or Toggle as the GPIO action on overrun.

• Set - GPIO value will be set on overrun. Initial value is clear.
• Clear - GPIO value will be cleared on overrun. Initial value is set.
• Toggle - GPIO value toggles on overrun. Initial value is clear.

Additional notification option
Select to notify through any of the additional notification option on overrun: None, Trigger
interrupt, or Call user-defined function.

PIE number
Specify the Peripherals Interrupt Expansion (PIE) number for the interrupt to trigger on overrun.

This parameter appears only for specific processors and when the parameter Additional
notification option is set to Trigger interrupt.

CPU number
Specify the CPU number for the interrupt to trigger on overrun.

This parameter appears only for specific processors and when the parameter Additional
notification option is set to Trigger interrupt.

Interrupt number
Specify the interrupt number to trigger on overrun.

This parameter is available only for F2838x (ARM Cortex-M4) processor and if the parameter
Additional notification option is set to Trigger interrupt.

Name of the function
Specify the name of the custom C function to be called on overrun.

 Overrun detection

1-71

This parameter is available only if you set the parameter Additional notification option as
Call user-defined function. For more information, refer “Model Configuration Parameters:
Code Generation Custom Code” (Simulink Coder).

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2
• “Detect and Fix Task Overruns on Texas Instruments C2000 Hardware”

1 Configuration Parameters

1-72

Input X-BAR

The crossbars (X-bars) provides flexibility to connect device inputs, outputs, and internal resources in
a variety of configurations using Input X-BAR, Output X-BAR, and ePWM X-BAR.

The F2807x, F2837x, F2838x, F28002x, F28004x and F28003x processors support Input X-BAR. For
more information, refer to TI Technical Reference Manual of there respective processors.

The Input X-BAR is used to route signals from a GPIO to many different peripherals blocks such as
the ADC(s), eCAP(s), ePWM(s), and external interrupts. The Input X-BAR has access to every GPIO
and can route each signal to any (or multiple) of the peripherals blocks.

Input X-Bar code is generated only when it is used by any peripheral in the model.

INPUT# pin assignment
Specify a valid GPIO number from which the signal will be passed to the corresponding
destinations. When pin assignment is None, the corresponding Input X-Bar will not be configured.

Input X-BAR Destinations - F2838x

INPUT DESTINATION
INPUT1 eCAPx, ePWM X-BAR, ePWM[TZ1,TRIP1], Output X-BAR, CLB X-BAR, EtherCAT, ERAD
INPUT2 eCAPx, ePWM X-BAR, ePWM[TZ2,TRIP2], Output X-BAR, CLB X-BAR, EtherCAT, ERAD
INPUT3 eCAPx, ePWM X-BAR, ePWM[TZ3,TRIP3], Output X-BAR, CLB X-BAR, EtherCAT, ERAD
INPUT4 eCAPx, ePWM X-BAR, XINT1, Output X-BAR, CLB X-BAR, EtherCAT, ERAD
INPUT5 eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCIN1, ePWM SYNC, eCAP SYNC, Output

X-BAR, CLB X-BAR, EtherCAT, ERAD
INPUT6 eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2, Output X-BAR, ePWM SYNC, eCAP

SYNC, CLB X-BAR, EtherCAT, ERAD
INPUT7 eCAPx, ePWM X-BAR, CLB X-BAR, EtherCAT, ERAD, eCAP1, Capture Input
INPUT8 eCAPx, ePWM X-BAR, CLB X-BAR, EtherCAT, ERAD, eCAP2, Capture Input
INPUT9 eCAPx, ePWM X-BAR, CLB X-BAR, EtherCAT, ERAD, eCAP3, Capture Input
INPUT10 eCAPx, ePWM X-BAR, CLB X-BAR, EtherCAT, ERAD, eCAP4, Capture Input
INPUT11 eCAPx, ePWM X-BAR, CLB X-BAR, EtherCAT, ERAD, eCAP5, Capture Input
INPUT12 eCAPx, ePWM X-BAR, CLB X-BAR, EtherCAT, ERAD, eCAP6, Capture Input
INPUT13 eCAPx, ePWM X-BAR, XINT4, CLB X-BAR, EtherCAT, ERAD
INPUT14 eCAPx, ePWM X-BAR, XINT5, CLB X-BAR, EtherCAT, ERAD
INPUT15 eCAPx, EtherCAT, DCC Clock Source-1
INPUT16 eCAPx, EtherCAT, DCC Clock Source-0

 Input X-BAR

1-73

Input X-BAR Destinations - F28004x

Input Destinations
INPUT1 eCAPx, ePWM X-BAR, ePWM[TZ1,TRIP1], Output X-BAR
INPUT2 eCAPx, ePWM X-BAR, ePWM[TZ2,TRIP2], Output X-BAR
INPUT3 eCAPx, ePWM X-BAR, ePWM[TZ3,TRIP3], Output X-BAR
INPUT4 eCAPx, ePWM X-BAR, XINT1, Output X-BAR
INPUT5 eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCIN1, Output X-BAR
INPUT6 eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2, Output X-BAR
INPUT7 eCAPx, ePWM X-BAR
INPUT8 eCAPx, ePWM X-BAR
INPUT9 eCAPx, ePWM X-BAR
INPUT10 eCAPx, ePWM X-BAR
INPUT11 eCAPx, ePWM X-BAR
INPUT12 eCAPx, ePWM X-BAR
INPUT13 eCAPx, ePWM X-BAR, XINT4
INPUT14 eCAPx, ePWM X-BAR, XINT5
INPUT15 eCAPx
INPUT16 eCAPx

Input X-BAR Destinations - F2807x and F2837x

Input Destinations
INPUT1 ePWM[TZ1,TRIP1], ePWM X-BAR, CLB X-BAR, Output X-BAR
INPUT2 ePWM[TZ2,TRIP2], ePWM X-BAR, CLB X-BAR, Output X-BAR
INPUT3 ePWM[TZ3,TRIP3], ePWM X-BAR, CLB X-BAR, Output X-BAR
INPUT4 XINT1, ePWM X-BAR, CLB X-BAR, Output X-BAR
INPUT5 XINT2, ADCEXTSOC, EXTSYNCIN1, ePWM X-BAR, CLB X-BAR, Output X-BAR
INPUT6 XINT3, ePWM[TRIP6], EXTSYNCIN2, ePWM X-BAR, CLB X-BAR, Output X-BAR
INPUT7 ECAP1
INPUT8 ECAP2
INPUT9 ECAP3
INPUT10 ECAP4
INPUT11 ECAP5
INPUT12 ECAP6
INPUT13 XINT4
INPUT14 XINT5

1 Configuration Parameters

1-74

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 Input X-BAR

1-75

Output X-BAR

The crossbars (X-BARs) provides flexibility to connect device inputs, outputs, and internal resources
in a variety of configurations using Input X-BAR, Output X-BAR, and ePWM X-BAR.

The F2807x, F2837x, F2838x, F28002x, F28004x and F28003x processors support Output X-BAR. For
more information, refer to TI Technical Reference Manual of there respective processors.

Output X-BAR takes signals from inside the device and brings them out to a GPIO. The Output X-BAR
contains eight outputs. The signals which is passed to the GPIO comes from the Multiplexer(MUX).
Each output has 32 MUX and you can select one signal per MUX.

OUPUT# MUX select
Select the MUX to map the signal to the MUX output. OUTPUT# MUX select value ranges based
on the processor selected.

Selecting Disable all will indicate that all MUXes are disabled and the Output X-BAR# is not
configured.

Note OUTPUT# MUX select will not have MUX entries whose inputs are all reserved.

Select MUX input
Select the signal to the MUX selected in OUTPUT# MUX select.

Select the input signals for the MUX which is sent to the GPIO. You can select one signal per
MUX. The input signal to the MUX varies based on the MUX selected and processor.

The following table lists the OUTPUT MUX select and Select MUX input for C28x processor
F2838x. The row headers 0-3 represent the Select MUX input and column headers 0-31
represent the OUTPUT MUX select.

1 Configuration Parameters

1-76

Output X-BAR Mux Configuration Table - F2838x

Select MUX

INPUT

0 1 2 3

OUTPUT# MUX

select
0 CMPSS1.CTRIPOUTH CMPSS1.CTRIPOUTH_OR_ CTRIPOUTL ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPOUTL INPUTXBAR1 CLB1_4.1 ADCCEVT1
2 CMPSS2.CTRIPOUTH CMPSS2.CTRIPOUTH_OR_ CTRIPOUTL ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPOUTL INPUTXBAR2 CLB1_5.1 ADCCEVT2
4 CMPSS3.CTRIPOUTH CMPSS3.CTRIPOUTH_OR_ CTRIPOUTL ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPOUTL INPUTXBAR3 CLB2_4.1 ADCCEVT3
6 CMPSS4.CTRIPOUTH CMPSS4.CTRIPOUTH_OR_ CTRIPOUTL ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPOUTL INPUTXBAR4 CLB2_5.1 ADCCEVT4
8 CMPSS5.CTRIPOUTH CMPSS5.CTRIPOUTH_OR_ CTRIPOUTL ADCBEVT1 ECAP5.OUT
9 CMPSS5.CTRIPOUTL INPUTXBAR5 CLB3_4.1 ADCDEVT1
10 CMPSS6.CTRIPOUTH CMPSS6.CTRIPOUTH_OR_ CTRIPOUTL ADCBEVT2 ECAP6.OUT
11 CMPSS6.CTRIPOUTL INPUTXBAR6 CLB3_5.1 ADCDEVT2
12 CMPSS7.CTRIPOUTH CMPSS7.CTRIPOUTH_OR_ CTRIPOUTL ADCBEVT3 ECAP7.OUT
13 CMPSS7.CTRIPOUTL ADCSOCA CLB4_4.1 ADCDEVT3
14 CMPSS8.CTRIPOUTH CMPSS8.CTRIPOUTH_OR_ CTRIPOUTL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPOUTL ADCSOCB CLB4_5.1 ADCDEVT4
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_ COMPL Reserved Reserved
17 SD1FLT1.COMPL Reserved CLB5_4.1 CPU1.CLA1HALT
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_ COMPL Reserved ECATSYNC0
19 SD1FLT2.COMPL Reserved CLB5_5.1 ECATSYNC1
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_ COMPL Reserved Reserved
21 SD1FLT3.COMPL Reserved CLB6_4.1 Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_ COMPL Reserved Reserved
23 SD1FLT4.COMPL INPUTXBAR10 CLB6_5.1 Reserved
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_ COMPL Reserved Reserved
25 SD2FLT1.COMPL Reserved Reserved CLB7_4.1
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_ COMPL Reserved Reserved
27 SD2FLT2.COMPL Reserved ERRORSTS.ERROR CLB7_5.1
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_ COMPL XCLKOUT Reserved
29 SD2FLT3.COMPL Reserved Reserved CLB8_4.1
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_ COMPL Reserved Reserved

 Output X-BAR

1-77

Select MUX

INPUT

0 1 2 3

OUTPUT# MUX

select
31 SD2FLT4.COMPL Reserved Reserved CLB8_5.1

1 Configuration Parameters

1-78

Output X-BAR Mux Configuration Table - F28004x

Select MUX

INPUT

0 1 2 3

OUTPUT#
MUX select

0 CMPSS1.CTRIPOU
TH

CMPSS1.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT1 ECAP1OUT

1 CMPSS1.CTRIPOU
TL

INPUTXBAR1 CLB1_OUT4 ADCCEVT1

2 CMPSS2.CTRIPOU
TH

CMPSS2.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT2 ECAP2OUT

3 CMPSS2.CTRIPOU
TL

INPUTXBAR2 CLB1_OUT5 ADCCEVT2

4 CMPSS3.CTRIPOU
TH

CMPSS3.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT3 ECAP3OUT

5 CMPSS3.CTRIPOU
TL

INPUTXBAR3 CLB2_OUT4 ADCCEVT3

6 CMPSS4.CTRIPOU
TH

CMPSS4.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT4 ECAP4OUT

7 CMPSS4.CTRIPOU
TL

INPUTXBAR4 CLB2_OUT5 ADCCEVT4

8 CMPSS5.CTRIPOU
TH

CMPSS5.CTRIPOUTH_OR_
CTRIPOUTL

ADCBEVT1 ECAP5OUT

9 CMPSS5.CTRIPOU
TL

INPUTXBAR5 CLB3_OUT4 Reserved

10 CMPSS6.CTRIPOU
TH

CMPSS6.CTRIPOUTH_OR_
CTRIPOUTL

ADCBEVT2 ECAP6OUT

11 CMPSS6.CTRIPOU
TL

INPUTXBAR6 CLB3_OUT5 Reserved

12 CMPSS7.CTRIPOU
TH

CMPSS7.CTRIPOUTH_OR_
CTRIPOUTL

ADCBEVT3 ECAP7OUT

13 CMPSS7.CTRIPOU
TL

ADCSOCAO CLB4_OUT4 Reserved

14 Reserved Reserved ADCBEVT4 EXTSYNCOU
T

15 Reserved ADCSOCBO CLB4_OUT5 Reserved
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COM

PL
Reserved Reserved

17 SD1FLT1.COMPL Reserved Reserved CLAHALT

 Output X-BAR

1-79

Select MUX

INPUT

0 1 2 3

OUTPUT#
MUX select

18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COM
PL

Reserved Reserved

19 SD1FLT2.COMPL Reserved Reserved Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COM

PL
Reserved Reserved

21 SD1FLT3.COMPL Reserved Reserved Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COM

PL
Reserved Reserved

23 SD1FLT4.COMPL Reserved Reserved Reserved

1 Configuration Parameters

1-80

Output X-BAR Mux Configuration Table - F2807x and F2837x

Select MUX

INPUT

0 1 2 3

OUTPUT# MUX

select
0 CMPSS1.CTRIPOUTH CMPSS1.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT1 ECAP1OUT
1 CMPSS1.CTRIPOUTL INPUTXBAR1 CLB1_OUT4 ADCCEVT1
2 CMPSS2.CTRIPOUTH CMPSS2.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT2 ECAP2OUT
3 CMPSS2.CTRIPOUTL INPUTXBAR2 CLB1_OUT5 ADCCEVT2
4 CMPSS3.CTRIPOUTH CMPSS3.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT3 ECAP3OUT
5 CMPSS3.CTRIPOUTL INPUTXBAR3 CLB2_OUT4 ADCCEVT3
6 CMPSS4.CTRIPOUTH CMPSS4.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT4 ECAP4OUT
7 CMPSS4.CTRIPOUTL INPUTXBAR4 CLB2_OUT5 ADCCEVT4
8 CMPSS5.CTRIPOUTH CMPSS5.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT1 ECAP5OUT
9 CMPSS5.CTRIPOUTL INPUTXBAR5 CLB3_OUT4 ADCDEVT1
10 CMPSS6.CTRIPOUTH CMPSS6.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT2 ECAP6OUT
11 CMPSS6.CTRIPOUTL INPUTXBAR6 CLB3_OUT5 ADCDEVT2
12 CMPSS7.CTRIPOUTH CMPSS7.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT3
13 CMPSS7.CTRIPOUTL ADCSOCAO CLB4_OUT4 ADCDEVT3
14 CMPSS8.CTRIPOUTH CMPSS8.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPOUTL ADCSOCBO CLB4_OUT5 ADCDEVT4
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL Reserved Reserved
17 SD1FLT1.COMPL Reserved Reserved Reserved
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL Reserved Reserved
19 SD1FLT2.COMPL Reserved Reserved Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL Reserved Reserved
21 SD1FLT3.COMPL Reserved Reserved Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL Reserved Reserved
23 SD1FLT4.COMPL Reserved Reserved Reserved
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL Reserved Reserved
25 SD2FLT1.COMPL Reserved Reserved Reserved
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL Reserved Reserved
27 SD2FLT2.COMPL Reserved Reserved Reserved
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL Reserved Reserved
29 SD2FLT3.COMPL Reserved Reserved Reserved
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL Reserved Reserved

 Output X-BAR

1-81

Select MUX

INPUT

0 1 2 3

OUTPUT# MUX

select
31 SD2FLT4.COMPL Reserved Reserved Reserved

Note Ensure the selected MUX input peripheral is enabled.

OUPUT# MUX (MUX 0 -> 31)
Indicates the input signal selected for each output# MUX. For example,
XXXX1XXXXXXXXXXXXXXXXXXXXXXXXXX indicates that input signal 1 was selected for MUX 4. X
indicates that the MUX is disabled and no signal from the MUX will be sent to the Output X-BAR
output.

All the signals which are selected will be logically OR'd and sent to the output signal on the GPIO
pin.

RESET OUPUT# MUX
Resets the signal selection for the MUX done so far.

Resets the OUTPUT# MUX (MUX 0->31) and Select MUX input inputs.
OUPUT# pin assignment

Select the GPIO pin to which the selected signals will be passed to. All signals from the MUXes
which are enabled will be logically OR'd before being passed on to the respective OUTPUTx
signal on the GPIO pin.

Enable OUTPUT# latch
Enable the output latch to latch the output signal on the GPIO pin. Latch signal has to be cleared
manually.

Invert OUTPUT#
Select to invert the output signal to the GPIO pin.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-82

CLB X-BAR

The CLB X-BAR brings signals to the CLB modules. The CLB X-BAR has eight outputs which are
routed to each CLB module.

AUXSIG# MUX select
Select the MUX to map the signal to the MUX AUXSIG#. AUXSIG# (# can take values 0 to 7)

You can select up to one signal per mux (maximum available up to of 31 muxes) for each
AUXSIG# output. AUXSIG# MUX select values are based on the processor selected.

Selecting Disable all will indicate that all MUXes are disabled and the CLB X-BAR# is not
configured.

Note AUXSIG# MUX select will not have MUX entries whose inputs are all reserved.

Select MUX input
Select the signal to the MUX selected in AUXSIG# MUX select. Ensure the selected MUX input
peripheral is enabled and utilized.

Select the input signals for the MUX which is sent to the CLB. You can select one signal per MUX.
The input signal to the MUX varies based on the MUX selected and processor.

The following table lists the AUXSIG# MUX select and Select MUX input for C28x processor
F2838x. The row headers 0-3 represent the Select MUX input and column headers 0-31
represent the AUXSIG# MUX select.

 CLB X-BAR

1-83

CLB X-BAR Mux Configuration Table - F2838x

Select MUX

INPUT

0 1 2 3

AUXSIG# MUX

select
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIP ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPL INPUTXBAR1 CLB1_OUT4 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIP ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPL INPUTXBAR2 CLB1_OUT5 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRIP ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPL INPUTXBAR3 CLB2_OUT4 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRIP ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPL INPUTXBAR4 CLB2_OUT5 ADCCEVT4
8 CMPSS5.CTRIPH CMPSS5.CTRIPH_OR_CTRIP ADCBEVT1 ECAP5.OUT
9 CMPSS5.CTRIPL INPUTXBAR5 CLB3_OUT4 ADCDEVT1
10 CMPSS6.CTRIPH CMPSS6.CTRIPH_OR_CTRIP ADCBEVT2 ECAP6.OUT
11 CMPSS6.CTRIPL INPUTXBAR6 CLB3_OUT5 ADCDEVT2
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRIP ADCBEVT3 ECAP7.OUT
13 CMPSS7.CTRIPL ADCSOCA CLB4_OUT4 ADCDEVT3
14 CMPSS8.CTRIPH CMPSS7.CTRIPH_OR_CTRIP ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPL ADCSOCB CLB4_OUT5 ADCDEVT4
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_ COMPL SD1FLT1.COMPZ SD1FLT1.DRINT
17 SD1FLT1.COMPL INPUTXBAR7 CLB5_OUT4 CPU1.CLA1HALT
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_ COMPL SD1FLT2.COMPZ SD1FLT2.DRINT
19 SD1FLT2.COMPL INPUTXBAR8 CLB5_OUT5 Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_ COMPL SD1FLT3.COMPZ SD1FLT3.DRINT
21 SD1FLT3.COMPL INPUTXBAR9 CLB6_OUT4 Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_ COMPL SD1FLT4.COMPZ SD1FLT4.DRINT
23 SD1FLT4.COMPL INPUTXBAR10 CLB6_OUT5 EMAC.PPS1
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_ COMPL SD2FLT1.COMPZ SD2FLT1.DRINT
25 SD2FLT1.COMPL INPUTXBAR11 MCANA.FEVT0 CLB7_OUT4
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_ COMPL SD2FLT2.COMPZ SD2FLT2.DRINT
27 SD2FLT2.COMPL INPUTXBAR12 MCANA.FEVT1 CLB7_OUT5
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_ COMPL SD2FLT3.COMPZ SD2FLT3.DRINT
29 SD2FLT3.COMPL INPUTXBAR13 MCANA.FEVT2 CLB8_OUT4
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_ COMPL SD2FLT4.COMPZ SD2FLT4.DRINT

1 Configuration Parameters

1-84

Select MUX

INPUT

0 1 2 3

AUXSIG# MUX

select
31 SD2FLT4.COMPL INPUTXBAR14 EMAC.PPS0 CLB8_OUT5

 CLB X-BAR

1-85

CLB X-BAR Mux Configuration Table - F28003x

Select MUX

INPUT

0 1 2 3

AUXSIG# MUX

select
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIP ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPL INPUTXBAR1 CLB1_OUT4 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIP ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPL INPUTXBAR2 CLB1_OUT5 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRIP ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPL INPUTXBAR3 CLB2_OUT4 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRIP ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPL INPUTXBAR4 CLB2_OUT5 ADCCEVT4
8 Reserved Reserved ADCBEVT1 Reserved
9 Reserved INPUTXBAR5 CLB3_OUT4 Reserved
10 Reserved Reserved ADCBEVT2 Reserved
11 Reserved INPUTXBAR6 CLB3_OUT5 Reserved
12 Reserved Reserved ADCBEVT3 Reserved
13 Reserved ADCSOCAO CLB4_4 Reserved
14 Reserved Reserved ADCBEVT4 EXTSYNCOUT
15 Reserved ADCSOCBO CLB4_5 Reserved
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_ COMPL SD1FLT1.COMPZ SD1FLT1.DRINT
17 SD1FLT1.COMPL INPUTXBAR7 Reserved CPU1.CLA1HALT
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_ COMPL SD1FLT2.COMPZ SD1FLT2.DRINT
19 SD1FLT2.COMPL INPUTXBAR8 Reserved ERRORSTS ERROR
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_ COMPL SD1FLT3.COMPZ SD1FLT3.DRINT
21 SD1FLT3.COMPL INPUTXBAR9 Reserved Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_ COMPL SD1FLT4.COMPZ SD1FLT4.DRINT
23 SD1FLT4.COMPL INPUTXBAR10 Reserved Reserved
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_ COMPL SD2FLT1.COMPZ SD2FLT1.DRINT
25 SD2FLT1.COMPL INPUTXBAR11 MCANA.FEVT0 Reserved
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_ COMPL SD2FLT2.COMPZ SD2FLT2.DRINT
27 SD2FLT2.COMPL INPUTXBAR12 MCANA.FEVT1 Reserved
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_ COMPL SD2FLT3.COMPZ SD2FLT3.DRINT
29 SD2FLT3.COMPL INPUTXBAR13 MCANA.FEVT2 Reserved
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_ COMPL SD2FLT4.COMPZ SD2FLT4.DRINT

1 Configuration Parameters

1-86

Select MUX

INPUT

0 1 2 3

AUXSIG# MUX

select
31 SD2FLT4.COMPL INPUTXBAR14 ERRORSTS ERROR Reserved

 CLB X-BAR

1-87

CLB X-BAR Mux Configuration Table - F28004x

Select MUX

INPUT

0 1 2 3

AUXSIG#
MUX select

0 CMPSS1.CTRIPOU
TH

CMPSS1.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT1 ECAP1OUT

1 CMPSS1.CTRIPOU
TL

INPUTXBAR1 CLB1_OUT4 ADCCEVT1

2 CMPSS2.CTRIPOU
TH

CMPSS2.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT2 ECAP2OUT

3 CMPSS2.CTRIPOU
TL

INPUTXBAR2 CLB1_OUT5 ADCCEVT2

4 CMPSS3.CTRIPOU
TH

CMPSS3.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT3 ECAP3OUT

5 CMPSS3.CTRIPOU
TL

INPUTXBAR3 CLB2_OUT4 ADCCEVT3

6 CMPSS4.CTRIPOU
TH

CMPSS4.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT4 ECAP4OUT

7 CMPSS4.CTRIPOU
TL

INPUTXBAR4 CLB2_OUT5 ADCCEVT4

8 CMPSS5.CTRIPOU
TH

CMPSS5.CTRIPOUTH_OR_
CTRIPOUTL

ADCBEVT1 ECAP5OUT

9 CMPSS5.CTRIPOU
TL

INPUTXBAR5 CLB3_OUT4 Reserved

10 CMPSS6.CTRIPOU
TH

CMPSS6.CTRIPOUTH_OR_
CTRIPOUTL

ADCBEVT2 ECAP6OUT

11 CMPSS6.CTRIPOU
TL

INPUTXBAR6 CLB3_OUT5 Reserved

12 CMPSS7.CTRIPOU
TH

CMPSS7.CTRIPOUTH_OR_
CTRIPOUTL

ADCBEVT3 ECAP7OUT

13 CMPSS7.CTRIPOU
TL

ADCSOCAO CLB4_OUT4 Reserved

14 Reserved Reserved ADCBEVT4 EXTSYNCOU
T

15 Reserved ADCSOCBO CLB4_OUT5 Reserved
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COM

PL
Reserved Reserved

17 SD1FLT1.COMPL Reserved Reserved CLAHALT

1 Configuration Parameters

1-88

Select MUX

INPUT

0 1 2 3

AUXSIG#
MUX select

18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COM
PL

Reserved Reserved

19 SD1FLT2.COMPL Reserved Reserved Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COM

PL
Reserved Reserved

21 SD1FLT3.COMPL Reserved Reserved Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COM

PL
Reserved Reserved

23 SD1FLT4.COMPL Reserved Reserved Reserved

 CLB X-BAR

1-89

CLB X-BAR Mux Configuration Table - F28002x

Select MUX

INPUT

0 1 2 3

AUXSIG#
MUX select

0 CMPSS1.CTRIPOU
TH

CMPSS1.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT1 ECAP1OUT

1 CMPSS1.CTRIPOU
TL

INPUTXBAR1 CLB1_OUT4 ADCCEVT1

2 CMPSS2.CTRIPOU
TH

CMPSS2.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT2 ECAP2OUT

3 CMPSS2.CTRIPOU
TL

INPUTXBAR2 CLB1_OUT5 ADCCEVT2

4 CMPSS3.CTRIPOU
TH

CMPSS3.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT3 ECAP3OUT

5 CMPSS3.CTRIPOU
TL

INPUTXBAR3 CLB2_OUT4 ADCCEVT3

6 CMPSS4.CTRIPOU
TH

CMPSS4.CTRIPOUTH_OR_
CTRIPOUTL

ADCAEVT4 Reserved

7 CMPSS4.CTRIPOU
TL

INPUTXBAR4 CLB2_OUT5 ADCCEVT4

9 Reserved INPUTXBAR5 Reserved Reserved
11 Reserved INPUTXBAR6 Reserved Reserved
13 Reserved ADCSOCAO Reserved Reserved
14 Reserved Reserved Reserved EXTSYNCOU

T

1 Configuration Parameters

1-90

CLB X-BAR Mux Configuration Table - F2807x/F2837xS/F2837xD

Select MUX

INPUT

0 1 2 3

AUXSIG#
MUX select

0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRI
PL

ADCAEVT1 ECAP1.OUT

1 CMPSS1.CTRIPL INPUTXBAR1 CLB1_OUT4 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRI

PL
ADCAEVT2 ECAP2.OUT

3 CMPSS2.CTRIPL INPUTXBAR2 CLB1_OUT5 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRI

PL
ADCAEVT3 ECAP3OUT

5 CMPSS3.CTRIPL INPUTXBAR3 CLB2_OUT4 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRI

PL
ADCAEVT4 ECAP4.OUT

7 CMPSS4.CTRIPL INPUTXBAR4 CLB2_OUT5 ADCCEVT4
8 CMPSS5.CTRIPH CMPSS4.CTRIPH_OR_CTRI

PL
ADCBEVT1 ECAP5.OUT

9 CMPSS5.CTRIPL INPUTXBAR5 CLB3_OUT4 ADCCEVT1
10 CMPSS6.CTRIPH CMPSS4.CTRIPH_OR_CTRI

PL
ADCBEVT1 ECAP6.OUT

11 CMPSS6.CTRIPL INPUTXBAR6 CLB3_OUT5 ADCCEVT2
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRI

PL
ADCBEVT3 Reserved

13 CMPSS7.CTRIPL ADCSOCAO CLB4_OUT4 ADCDEVT3
14 CMPSS8.CTRIPH CMPSS8.CTRIPH_OR_CTRI

PL
ADCBEVT4 EXTSYNCOU

T
15 CMPSS8.CTRIPL ADCSOCB CLB4_OUT5 ADCDEVT4
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COM

PL
Reserved Reserved

17 SD1FLT1.COMPL Reserved Reserved Reserved
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COM

PL
Reserved Reserved

19 SD1FLT2.COMPL Reserved Reserved Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COM

PL
Reserved Reserved

21 SD1FLT3.COMPL Reserved Reserved Reserved

 CLB X-BAR

1-91

Select MUX

INPUT

0 1 2 3

AUXSIG#
MUX select

22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COM
PL

Reserved Reserved

23 SD1FLT4.COMPL Reserved Reserved Reserved
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COM

PL
Reserved Reserved

25 SD2FLT1.COMPL Reserved Reserved Reserved
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COM

PL
Reserved Reserved

27 SD2FLT2.COMPL Reserved Reserved Reserved
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COM

PL
Reserved Reserved

29 SD2FLT3.COMPL Reserved Reserved Reserved
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COM

PL
Reserved Reserved

31 SD2FLT4.COMPL Reserved Reserved Reserved

For F2837x and F2807x processors CLB clock comes from ePWM clock. And for F2837xD, if both
CLB and ePWM are used then they should be in same CPU.

AUXSIG# MUX (MUX 0 -> 31)
Indicates the input signal selected for each output# MUX. For example,
XXXX1XXXXXXXXXXXXXXXXXXXXXXXXXX indicates that input signal 1 was selected for MUX 4. X
indicates that the MUX is disabled and no signal from the MUX will be sent to the CLB X-BAR.

All the signals which are selected will be logically OR'd before being passed on to the respective
AUXSIG#x signal on the CLB.

RESET AUXSIG# MUX
Resets the signal selection for the MUX done so far.

Resets the AUXSIG# MUX (MUX 0->31) and Select MUX input inputs.
Invert AUXSIG#

Select to invert the auxiliary signal on the CLB.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-92

CLB

The configurable logic block (CLB) is a collection of configurable blocks that can be inter-connected
using software to implement custom digital logic functions. The CLB is able to enhance existing
peripherals through a set of crossbar interconnections, which provide a high level of connectivity to
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture
modules (eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow
the CLB to be connected to external GPIO pins. In this way, the CLB can be configured to interact
with device peripherals to perform small logical functions such as simple PWM generators, or to
implement custom serial data exchange protocols.

Note

• For F2838x processor the CLB tile clock is configured in SYNC mode and is derived as
SYSCLKOUT/EPWMCLKDIV (Achievable SYSCLKOUT in MHz/EPWM clock divider) should be
always less than 150MHz.

• For F28002x and F28004x processors the CLB tile clock is configured in SYNC mode and should
be less than 100 MHz.

• For F2837x and F2807x processors CLB clock comes from ePWM clock. And for F2837xD, if both
CLB and ePWM are used then they should be in same CPU.

Enable CLB Tile #
Select this option to enable the CLB tile. The number of CLB tile available based on the hardware
board.

This option will enable you to configure the input and output signals to the CLB tile, the logic for
the CLB tile can be implemented in TI Code Composer Studio CLB tool with system configuration
file and the generated clb_config.h and clb_config.c file can be integrated with the parameters
CLB configuration header file (clb_config.h) and CLB configuration source file
(clb_congif.c).

Tile # Name
Specify the tile name. Ensure that the tile name is same as the name mentioned in the CLB Tool.

Add the tile# name for the given CLB tile. This tile name will be used to generate the required
function declaration and calling the function for CLB tile configuration. The tile names entered
here should be an exact match with the tile name set in CLB tool system configuration file In TI
CCS used to generate the clb_config.c and clb_config.h file. Mismatch may result in build failure
or in incorrect configuration of CLB tiles. For example, if the tile name is TILE1, the function
present in clb_config.c and clb_config.h is initTILE1 and the function called during code
generation is also initTILE1.

IN# mux selection
Configure the signal source type for the IN# mux for CLB# tile. The # corresponds to the values
0 to 7. The type of signal can be global inputs, local inputs and GPREG.

Ensure corresponding X-BAR configurations are done to route the signals properly for the CLB
tile inputs

 CLB

1-93

Input
Configure the peripheral signal as input to the CLB tile. Depending upon the signal type selected
for IN# mux selection, different input signals can be configured. For GPREG IN# mux selection,
the input values can be either 0 or 1.

Input filtering
Configure the type of input filtering for the signal type Global inputs and Local inputs. This
option will be disabled for GPREG as it is not applicable. The values can be No filtering, Rising
edge detect, falling edge detect and any edge detect.

Enable sync
Configure the synchronization option (SYNC) for the Global inputs and Local inputs IN# mux
selection only. Enabling this option will synchronize the signal with respective to clock. This
option is not applicable for GPREG type and will be disabled for the same.

Note For the signals which are specified as ASYNC in TI reference manuals, the input filter
synchronizer must be enabled explicitly.

Route OUT# signal to
Use this option to route the CLB output signal to the peripheral instead of the default peripheral
signal. Each CLB output signal passes through an external multiplexer that intersects a specific
peripheral signal. If the options in this parameter is enabled it will route the CLB output for the
specific peripheral instead of the original peripheral signal.

Each output signal will be replicated and can be routed to different peripheral.

For example,

1) In TI F2838x (C28x) and TI F28002x, for CLB tile1 Out0 is replicated as Out0_0, Out0_1 (also
represented as Out8), Out0_2 (also represented as Out16) and Out0_3 (also represented as
Out24). Out0_0 is routed to ePWM1A, OUT0_1 is routed to eQEP.QCLK, Out0_2 is routed to
Global mux and Out0_3 is routed to SPI_A.CLKIN. So same output signal is routed to 4 different
peripherals.

2) In TI Piccolo F28004x, for CLB tile1 Out0 is replicated as Out0_0, Out0_1 (also represented as
Out8), Out0_2 (also represented as Out16) and Out0_3 (also represented as Out24). Out0_0 is
routed to ePWM1A, OUT0_1 is routed to eQEP.QCLK, Out0_2 is routed to Global mux. So same
output signal can be routed to 3 peripherals.

Similarly all the out# signals are replicated. these options are provided as check boxes with
respective to the peripheral points where the CLB output signals are used as replacement to
original peripheral signal.

Note Global Mux option refers to the Global Input signal mux to each CLB Tile.

CLB configuration header file (clb_config.h)
Provide the paths for the CLB configuration header file clb_config.h. This file holds the required
function declarations and headers used to configure the CLB tile. This can be generated using
system configuration in CLB tool using TI Code composer studio. Ensure the tile names selected
in CLB tool matches with the tile name provided in the parameter Tile# name.

1 Configuration Parameters

1-94

You can provide the file path relative to the model path.
CLB configuration source file (clb_config.c)

Provide the paths for the CLB configuration source file clb_config.c. This file holds the required
function definitions used to configure the CLB tile. This can be generated using system
configuration in CLB tool using TI Code composer studio. Ensure the tile names selected in CLB
tool matches with the tile name provided in the parameter Tile# name.

You can provide the file path relative to the model path.
Browse

Click this button to browse the path for the file selection.
Edit

Click this button to open the existing file for editing in MATLAB editor.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 CLB

1-95

ARM Cortex-M4 - MCAN

The Controller Area Network (CAN) is a serial communications protocol that efficiently supports
distributed real time control with a high level of security.

The MCAN module supports both Classic CAN and CAN FD (CAN with flexible data-rate)
specifications. The CAN FD feature allows high throughput and increased payload per data frame.
The Classic CAN and CAN FD devices can coexist on the same network without any conflict.

Protocol mode
Select the CAN type. CAN type can either be Classic CAN or CAN-FD.

MCAN module clock frequency (=connectivity manager (ARM Cortex-M) clock) in MHz
Displays the MCAN module clock frequency (=connectivity manager (ARM Cortex-M) clock) in
MHz.

MCAN bit clock frequency (MCAN module clock freq/4) in MHz
Displays the MCAN bit clock frequency (MCAN module clock freq/4) in MHz.

Nominal bit rate prescaler (NBRP: 1 to 512)
Nominal Bit Rate Prescaler(NBRP). The value by which the oscillator frequency is divided for
generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values
for the bit rate prescaler are 1 to 512.

Nominal time segment 1 (NTSEG1: 2 to 256)
Nominal Time Segment(NTGEG) before sample point. Valid values are 2 to 256.

Nominal time segment 2 (NTSEG2: 2 to 128)
Nominal Time Segment(NTSEG) after sample point. Valid values are 2 to 128.

Closest achievable nominal baud rate (MCAN bit clock/NBRP/(NTSEG1+NTSEG2)) in
bits/sec

Closest achievable MCAN baud rate calculated based on parameters and given formula.
Nominal re-synchronization jump width (NSJW: 1 to 128)

Nominal Resynchronization Jump Width (NSJW). Valid values are 1 to 128.
Enable bit rate switching

Enables bit rate switching between nominal bit rate and data bit rate.

This parameter is available only for CAN-FD protocol mode.
Data bit rate prescaler (DBRP: 1 to 32)

Data Bit Rate Prescaler (DBRP). The value by which the oscillator frequency is divided for
generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values
for the bit rate prescaler are 1 to 32.

This parameter is available only for CAN-FD protocol mode and if Enable bit rate switching
parameter is enabled.

Data time segment 1 (DTSEG1: 1 to 32)
Data Time Segment (DTSEG1) before sample point . Valid values are 1 to 32.

This parameter is available only for CAN-FD protocol mode and if Enable bit rate switching
parameter is enabled.

1 Configuration Parameters

1-96

Data time segment 2 (DTSEG2: 1 to 16)
Data Time Segment (DTSEG2) after sample point (DTSEG2). Valid values are 1 to 16.

This parameter is available only for CAN-FD protocol mode and if Enable bit rate switching
parameter is enabled.

Data baud rate (MCAN bit clock/DBRP/(DTSEG1+DTSEG2)) in bits/sec
Closest achievable MCAN data baud rate calculated based on data parameters and given formula.

This parameter is available only for CAN-FD protocol mode and if Enable bit rate switching
parameter is enabled.

Data re-synchronization jump width (DSJW: 1 to 16)
Data Resynchronization Jump Width (DSJW). Valid values are 1 to 16.

This parameter is available only for CAN-FD protocol mode and if Enable bit rate switching
parameter is enabled.

Mode
Select the operating mode for MCAN. Mode can be Normal, Internal loopback or Bus
monitoring.

Pin assignment(Tx)
Select a GPIO pin for the MCAN data transmission.

Pin assignment(Rx)
Select a GPIO pin for the MCAN data reception.

Transmission mode
Select the mode of transmission. Transmission mode can either be FIFO or Queue.

Enable blocking mode for Rx FIFO 0
Enable blocking mode for FIFO 0 data reception.

Enable blocking mode for Rx FIFO 1
Enable blocking mode for FIFO 1 data reception.

Update global filter configuration
Enable this parameter to update standard and extended filter IDs.

Reject remote frames standard
Rejects all remote frames with 11-bit standard IDs when enabled else the remote frames will be
filtered as per the settings from Update standard filter elements.

Reject remote frames extended
Rejects all remote frames with 29-bit extended IDs when enabled else the remote frames will be
filtered as per the settings from Update extended filter elements.

Non-matching frames standard
Defines how received messages with 11-bit standard IDs that do not match any element from
Update standard filter elements are treated. Non-matching frames standard can be:

• Accept in Rx FIFO 0

 ARM Cortex-M4 - MCAN

1-97

• Accept in Rx FIFO 1
• Reject

Non-matching frames extended
Defines how received messages with 29-bit extended IDs that do not match any element
fromUpdate extended filter elements are treated. Non-matching frames extended can be:

• Accept in Rx FIFO 0
• Accept in Rx FIFO 1
• Reject

Update standard filter elements
Select this parameter to update the standard 11bit ID filter elements parameters. Up to 128 filter
elements can be configured for 11-bit standard IDs.

Select standard filter
Select the standard filter element number. Filter number ranges between 0 to 127.

All enabled filter elements are used for acceptance filtering of standard frames. Acceptance
filtering stops at the first matching enabled filter element or when the end of the filter list is
reached.

Filter # configuration
Select one of the following parameter for the standard filter element selected using Select
standard filter parameter.

• Disable filter element
• Store in Rx FIFO 0 if filter matches
• Store in Rx FIFO 1 if filter matches
• Reject ID if filter matches
• Set priority if filter matches
• Set priority and store in FIFO 0 if filter matches
• Set priority and store in FIFO 1 if filter matches
• Store into Rx Buffer

Filter # type (filter type will be ignored if filter configuration is stored into Rx buffer)
Select one of the following parameter for the standard filter type selected using Select standard
filter parameter.

• Range filter (from ID1 to ID2) - For range filter the ID2 >= ID1
• Dual filter - Two dedicated message IDs is provided. To filter one specific message ID, the ID2

= ID1
• Classic ID and mask filter (ID1 = filter, ID2 = mask) - A 0 bit at the filter mask (SFID2) will

mask out the corresponding bit position of the configured Message ID filter (SFID1) and the
value of the received Message ID at that bit position is not relevant for acceptance filtering.
Only those bits of the received Message ID where the corresponding mask bits are 1 are
relevant for acceptance filtering.

1 Configuration Parameters

1-98

Filter # ID1
Specify the standard Filter ID 1.

Filter # ID2 (provide buffer number if filter configuration is stored into Rx buffer)
Specify the standard Filter ID 2. Provide the buffer number if filter configuration is stored into Rx
buffer.

Update extended filter elements
Select this parameter to update the extended filter elements parameters.

Select extended filter
Select the extended filter element number. Filter number ranges between 0 to 63.

All enabled filter elements are used for acceptance filtering of extended frames. Acceptance
filtering stops at the first matching enabled filter element or when the end of the filter list is
reached.

Filter # configuration
Select one of the following parameters for the extended filter element selected using Select
extended filter :

• Disable filter element
• Store in Rx FIFO 0 if filter matches
• Store in Rx FIFO 1 if filter matches
• Reject ID if filter matches
• Set priority if filter matches
• Set priority and store in FIFO 0 if filter matches
• Set priority and store in FIFO 1 if filter matches
• Store into Rx Buffer

Filter # type (filter type will be ignored if filter configuration is stored into Rx buffer)
Extended filter type.

Select one of the standard filter type:

• Range filter (from ID1 to ID2) - For range filter the ID2 >= ID1
• Dual filter - Two dedicated message IDs is provided. To filter one specific message ID, the ID2

= ID1
• Classic ID and mask filter (ID1 = filter, ID2 = mask) - A 0 bit at the filter mask (EFID2) will

mask out the corresponding bit position of the configured Message ID filter (EFID1) and the
value of the received Message ID at that bit position is not relevant for acceptance filtering.
Only those bits of the received Message ID where the corresponding mask bits are 1 are
relevant for acceptance filtering.

Filter # ID1
Specify the first ID of extended ID filter element.

Filter # ID2 (provide buffer number if filter configuration is stored into Rx buffer)
Specify the second ID of extended ID filter element. Provide buffer number if filter configuration
is stored into Rx buffer.

 ARM Cortex-M4 - MCAN

1-99

Display configured extended and standard filters elements in command window
Click on Display configured extended and standard filters elements in command window
button to view the configured standard and extended filter elements in MATLAB command
window.

Reset standard filters configurations
Click Reset standard filters configurations to reset the configured standard filter
configurations.

Reset extended filters configurations
Click Reset extended filters configurations to reset the configured extended filter
configurations.

Configure memory
Select to configure the memory and its parameters. Select this parameter to configure CAN FD
memory parameters. This is not applicable for classic CAN as memory parameters is
automatically configured.

This parameter is available only for CAN FD protocol mode.

Maximum element size in TX FIFO (in bytes)
Select the maximum data size of CAN FD message in transmit FIFO.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Maximum element size in RX FIFO 0 (in bytes)
Select the maximum data size of CAN FD message in receive FIFO 0.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Maximum element size in RX FIFO 1 (in bytes)
Select the maximum data size of CAN FD message in receive FIFO 1.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Maximum element size in RX buffer (in bytes)
Select the maximum data size of CAN FD message in receive buffer.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Number of elements in TX FIFO/Queue
Select the number of elements (data + header CAN FD message) in transmit FIFO/Queue.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Number of elements in RX FIFO 0
Select the number of elements (data + header CAN FD message) in receive FIFO 0.

1 Configuration Parameters

1-100

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Number of elements in RX FIFO 1
Select the number of elements (data + header CAN FD message) in receive FIFO 1.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

Validate memory
Click Validate memory button to validate all the memory parameters configured.

This parameter is available only for CAN FD protocol mode and if Update memory
configuration is selected.

The following table explains the memory allocation.

 ARM Cortex-M4 - MCAN

1-101

Memory Allocation

Section Element size (in bytes) Number of Elements
Standard filter 4 Number of standard filters

configured in Update
standard filter elements.

Extended filter 8 Number of standard filters
configured in Update
extended filter elements.

Tx FIFO Header(8) + value specified
in Maximum element size
in TX FIFO (in bytes)

Number of elements in TX
FIFO/Queue.

Tx event FIFO 8 32
Rx buffer Header(8) + value specified

in Maximum element size
in RX buffer (in bytes)

Maximum buffer number
configured in Update
standard filter elements or
Update extended filter
elements configuration + 1

Rx FIFO 0 Header(8) + value specified
in Maximum element size
in RX FIFO 0 (in bytes)

Auto Allocate: If parameter
Number of elements in RX
FIFO 0 is set to Auto allocate
then it will verify if Rx FIFO
0 is used for matching or non-
matching frames and assign
remaining memory if it is
available. In this case
minimum available memory
should be 1 element size of
Rx FIFO 0.

Not Auto Allocate: Number
of elements in RX FIFO 0

Rx FIFO 1 Header(8) + value specified
in Maximum element size
in RX FIFO 1 (in bytes)

Auto Allocate: If parameter
Number of elements in RX
FIFO 1 is set to Auto allocate
then it will verify if Rx FIFO 1
is used for matching or non-
matching frames and assign
remaining memory if it is
available. In this case
minimum available memory
should be 1 element size of
Rx FIFO 1 .

Not Auto Allocate: Number
of elements in RX FIFO 1

1 Configuration Parameters

1-102

Section Element size (in bytes) Number of Elements
Note

• If parameter Number of elements in RX FIFO 0 or Number of elements in RX
FIFO 1 is set to auto allocate it verifies if Rx FIFO 0 or Rx FIFO 1 is used for matching
or non-matching frames and assign remaining available memory to their respective
FIFO.

• If only one FIFO is used then entire remaining memory is assigned it or it is distributed
equally between both the FIFO's. In this case minimum available memory will be 1
element size of Rx FIFO 0 or Rx FIFO 1.

Configure receive interrupt sources
Select to configure the receive interrupt parameters such as buffer and FIFO messages.

Configure RX buffer interrupt sources
Select to configure the receive buffer interrupt.

To select this parameter, select the Configure receive interrupt sources.

Dedicated RX buffer message
Select the dedicated interrupt line for receive buffer message.

To select this parameter, select the Configure RX buffer interrupt sources .

High priority message
Select the dedicated interrupt line for high priority message.

To configure this parameter, select the Configure receive buffer interrupt sources.

Configure RX FIFO 0 interrupt sources
Enable to configure the receive FIFO 0 interrupt sources.

To select this parameter, select the Configure receive interrupt sources.

RX FIFO 0 new message
Select the interrupt line for receive FIFO 0 new message.

To configure this parameter, select the Configure RX FIFO 0 interrupt.

RX FIFO 0 full
Select the interrupt line for receive FIFO 0 full.

To configure this parameter, select the Configure RX FIFO 0 interrupt.

RX FIFO 0 message lost
Select the interrupt line for receive FIFO 0 message lost.

To configure this parameter, select the Configure RX FIFO 0 interrupt.

RX FIFO 0 watermark
Select the interrupt line for receive FIFO 0 watermark.

 ARM Cortex-M4 - MCAN

1-103

To configure this parameter, select the Configure RX FIFO 0 interrupt.

Configure RX FIFO 1 interrupt sources
Enable to configure the receive FIFO 1 interrupt sources.

To configure this parameter, select the Configure RX FIFO 0 interrupt.

RX FIFO 1 new message
Select the interrupt line for receive FIFO 1 new message.

To select this parameter, select the Configure RX FIFO 1 interrupt sources.

RX FIFO 1 full
Select the interrupt line for receive FIFO 1 full.

To select this parameter, select the Configure RX FIFO 1 interrupt sources.

RX FIFO 1 message lost
Select the interrupt line for receive FIFO 1 message lost.

To select this parameter, select the Configure RX FIFO 1 interrupt sources.

RX FIFO 1 watermark
Select the interrupt line for receive FIFO 1 watermark.

To select this parameter, select the Configure RX FIFO 1 interrupt sources.

Configure transmit interrupt sources
Select to configure the transmit interrupt parameters such as event and FIFO.

Configure TX FIFO interrupt sources
Select to configure the transmit FIFO interrupt sources.

To select this parameter, select the Configure transmit interrupt sources.

Transmission complete
Select the transmission interrupt line for transfer complete.

To select this parameter, select the Configure TX FIFO interrupt sources .

Transmission cancellation finish
Select the transmission interrupt line for transfer cancellation finish.

To select this parameter, select the Configure TX FIFO interrupt sources .

TX FIFO empty
Select the transmission interrupt line for TX FIFO empty.

To select this parameter, select the Configure TX FIFO interrupt sources .

Configure TX event FIFO interrupt sources
Select to configure the transmit FIFO interrupt sources.

1 Configuration Parameters

1-104

To select this parameter, select the Configure transmit interrupt sources.

TX event FIFO new entry
Select the transmission interrupt line for TX event FIFO new entry.

To select this parameter, select the Configure TX event FIFO interrupt sources .

TX event FIFO element lost
Select the transmission interrupt line for TX event FIFO element lost.

To select this parameter, select the Configure TX event FIFO interrupt sources .

TX event FIFO full
Select the transmission interrupt line for TX event FIFO full.

To select this parameter, select the Configure TX event FIFO interrupt sources .

TX event FIFO watermark
Select the transmission interrupt line for TX event FIFO watermark.

To select this parameter, select the Configure TX event FIFO interrupt sources .

Configure other interrupt sources
Select to configure other interrupt sources.

Timestamp wraparound
Select the interrupt line for timestamp wraparound interrupt.

To select this parameter, select the Configure other interrupt sources.

Timeout occurred
Select the interrupt line for timeout occurred interrupt.

To select this parameter, select the Configure other interrupt sources.

Error logging overflow
Select the interrupt line for error logging overflow interrupt.

To select this parameter, select the Configure other interrupt sources.

Warning status
Select the interrupt line for warning status interrupt.

To select this parameter, select the Configure other interrupt sources.

Watchdog event
Select the interrupt line for watchdog event interrupt.

To select this parameter, select the Configure other interrupt sources.

Data protocol error
Select the interrupt line for data protocol error interrupt.

 ARM Cortex-M4 - MCAN

1-105

To select this parameter, select the Configure other interrupt sources.

Message RAM access failure
Select the interrupt line for message RAM access failure interrupt.

To select this parameter, select the Configure other interrupt sources.

Bit error uncorrected
Select the interrupt line for bit error uncorrected interrupt.

To select this parameter, select the Configure other interrupt sources.

Error passive status
Select the interrupt line for error passive status interrupt.

To select this parameter, select the Configure other interrupt sources.

Bus off status
Select the interrupt line for bus off status interrupt.

To select this parameter, select the Configure other interrupt sources.

Arbitration protocol error
Select the interrupt line for arbitration protocol error interrupt.

To select this parameter, select the Configure other interrupt sources.

Reserved address access
Select the interrupt line for reserved address access interrupt.

To select this parameter, select the Configure other interrupt sources.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-106

External Mode
Communication interface

Select the type of communication interface to run your model in external mode.

Default: XCP on Serial

• XCP on Serial
• XCP on TCP/IP

When you select Communication interface as XCP on Serial, consider the following
limitations:

Note

• Your antivirus software or firewall might block UDP/TCP traffic. Configure the software to
allow traffic from a specific IP port number.

• Due to RAM memory limitations on the F2838x(ARM Cortex-M4), loading application to RAM
is not supported for this block.

• CPU Timer 2 of F2838x Arm Cortex-M core (Connectivity Manager) provides time base to lwIP
stack. It is configured to trigger an interrupt every 1 ms. This timer should not be re-
configured if Ethernet blocks are being used in the model. If the corresponding interrupt is
armed through Hardware Interrupt block, it will run the interrupt handler every 1 ms.

Serial port in MATLAB preferences
Lists the COM port entries available in the device manager and saved COM port in MATLAB
preferences of the target hardware. You can select the required COM port from the drop-down.

The COM port value will be saved as MATLAB preference for a given target instead of model. For
example, if you choose a same target for a new model, the serial port saved in MATLAB
preferences will be selected automatically.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

You can also set the serial port in MATLAB preferences for the given hardware board using the
MATLAB command:

codertarget.tic2000.setSerialPortPreferences(Hardware board, CPU value, Serial port)

Here CPU value is optional argument.

To know the COM port used by the target hardware on your computer, see “Serial Configuration
for External Mode and PIL” on page 1-67.

Refresh
Lists the new COM port entries available in your device manager.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

 External Mode

1-107

Verbose
Select this to view the external mode execution progress and updates in the Diagnostic Viewer or
in the MATLAB command window.

Set logging buffer size automatically
Select this to automatically set the number of bytes to preallocate for the buffer in the hardware
during simulation. By default, the Set logging buffer size automatically parameter is selected.
If you clear this parameter, Logging buffer size (in bytes) parameter becomes available, where
you can manually specify the memory buffer size for XCP-based External mode simulation.

Maximum number of contiguous samples
Specify the maximum number of contiguous samples to be packed in a single packet. Memory
consumed on the target will increase with increasing value as contiguous needs to be stored on
target before transmitting.

See Also
“Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2 | “Serial
Configuration for External Mode and PIL” on page 1-67

1 Configuration Parameters

1-108

PIL
PIL Communication interface

Select the type of Processor-In-Loop (PIL) communication interface to run your model in external
mode.

Default: Serial

• TCP/IP

When you select PIL Communication interface as Serial, consider the following limitations:

Note

• Your antivirus software or firewall might block UDP/TCP traffic. Configure the software to
allow traffic from a specific IP port number.

• Due to RAM memory limitations on the F2838x(ARM Cortex-M4), loading application to RAM
is not supported for this block.

• CPU Timer 2 of F2838x Arm Cortex-M core (Connectivity Manager) provides time base to lwIP
stack. It is configured to trigger an interrupt every 1 ms. This timer should not be re-
configured if Ethernet blocks are being used in the model. If the corresponding interrupt is
armed through Hardware Interrupt block, it will run the interrupt handler every 1 ms.

Serial port in MATLAB preferences
Lists the COM port entries available in the device manager and saved COM port in MATLAB
preferences of the target hardware. You can select the required COM port from the drop-down.

The COM port value will be saved as MATLAB preference for a given target instead of model. For
example, if you choose a same target for a new model, the serial port saved in MATLAB
preferences will be selected automatically.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

You can also set the serial port in MATLAB preferences for the given hardware board using the
MATLAB command:

codertarget.tic2000.setSerialPortPreferences(Hardware board, CPU value, Serial port)

Here CPU value is optional argument.

To know the COM port used by the target hardware on your computer, see “Serial Configuration
for External Mode and PIL” on page 1-67.

Refresh
Lists the new COM port entries available in your device manager.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

 PIL

1-109

PIL Baud Rate (UART) Baud rate
This is the PIL baud rate used by the target. This is based on the baud rate that you specify in the
Desired Baud rate (in bits/sec) parameter for UART0.

See Also
“Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-110

Hardware Board Settings

Processing Unit

Choose the central processing unit (CPU) or control law accelerator (CLA) onto which to deploy the
model block in the model. The top level model is set to None for multiprocessor models.

Settings

Default: None

See Also
“Multiprocessor Execution” (SoC Blockset) | “Run Multiprocessor Models in External Mode”

 Hardware Board Settings

1-111

ARM Cortex-M4 - Build Options

Use the build options to specify how the build process takes place.

You can set the following parameters for build options:

Build action
Define how Embedded Coder responds when you build your model.

The Build, load and run option is supported for Texas Instruments Code Composer Studio
CCS v4 and the later versions.

If you select the Build, load and run option, you must provide the required CCS hardware
configuration file.

Disable parallel build

• on – When you select this option, the blockset compiles generated code and driver source
codes in sequential order.

• off – When you clear the selection, the blockset compiles generated code and driver source
codes parallely. Parallel execution reduces the time taken to build the model.

Device Name
Select a particular device from the selected processor family.

Boot From Flash (stand alone execution)
The option to specify if the application has to load to the flash. If you do not select this option, the
application loads to the RAM.

Use custom linker command file
Select this option, if you have your own custom linker file, which you can specify in the Linker
command file parameter. If you do not select this option, based on the device you have selected, a
default custom linker command file is used.

Linker command file
For each family of TI processor selected under Target hardware resources, one linker
command file is selected automatically.

For a different variant of the processor, you can select the variant from the ‘src’ folder in the
blockset installation path. You can also create custom linker command file and select the file path
using the Browse button.

The linker command file path provided can be absolute or relative. If the path provided is relative,
the path must be selected with respect to the folder where the model is present or the code
generation folder.

CCS hardware configuration file
The Code Composer Studio file required for downloading the application on the hardware. Select
one of the .ccxml files from the folder ‘CCS_Config’ folder under blockset installation folder.

Alternately, can use Code Composer Studio to create the ccxml file. In Code Composer Studio, go
to File > New > Target Configuration File. Select the file you created using the Browse
button. You can also edit the ccxml file using the Edit button.

1 Configuration Parameters

1-112

The ccxml files provided with C2000 Microcontroller Blockset are as follows:The ccxml files
provided are as follows:

• f2838x.ccxml – TI F2838xD XDS100v2 USB Emulator
• f2838x.ccxml – TI F2838xS XDS100v2 USB Emulator

See Also

More About
• “Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-

40

 ARM Cortex-M4 - Build Options

1-113

ARM Cortex-M4 - Clocking

Enter the 'Connectivity Manager (ARM Cortex-M) clock in MHz' value calculated in C28x
CPU1

Mention the value of Connectivity Manager (ARM Cortex-M) core clock in MHz configured by
C28x CPU1. Value of this parameter must be same as the value of the parameter 'Connectivity
Manager (ARM Cortex-M) clock in MHz' (auto calculated in the CPU1 model).

See Also

More About
• “Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-

40

1 Configuration Parameters

1-114

ARM Cortex-M4 - Ethernet

Use the ethernet options to specify the host addresses.

You can set the following parameters for ethernet options:

Enable DHCP for local IP address assignment
Select this parameter to configure the board to get an IP address from the local DHCP server on
the network.

You can get to know the dynamical assigned IP address through DHCP from the build log shown
in the diagnostic viewer.

Local IP Address
Select this parameter to set the IP address of the board.

Set the board IP address according to these guidelines:

• The subnet address, typically the first 3 bytes of the board IP address, must be the same as
the first 3 bytes of the host IP address.

• The last byte of the board IP address must be different from the last byte of the host IP
address.

• The board IP address must not conflict with the IP addresses of other computers. For example,
if the host IP address is 192.168.8.2, then you can use 192.168.8.3, if available.

Subnet mask
Specify the subnet mask for the board. The subnet mask is a mask that designates a logical
subdivision of a network.

The value of the subnet mask must be the same for all devices on the network.

Gateway
Set the serial gateway to the gateway required to access the target computer.

For example, when you set this parameter to 255.255.255.255, it means that you do not use a
gateway to connect to your target computer. If you connect your computers with a crossover
cable, leave this property as 255.255.255.255.

• If you communicate with the target computer from within your LAN, you do not need to
change this setting.

• If you communicate from a host located in a LAN different from your target computer
(especially via the Internet), you must define a gateway and specify its IP address in this
parameter.

MAC Address
Specify the media access control (MAC) address, the physical network address of the board.

Under most circumstances, you do not need to change the MAC address. If you connect more
than one board to a single computer so that each address is unique, change the MAC address.
You must have a separate network interface card (NIC) for each board.

 ARM Cortex-M4 - Ethernet

1-115

To change the MAC address, specify an address that is different from the address that belongs to
any other device attached to your computer. To obtain the MAC address for a specific board, refer
to the label affixed to the board or consult its documentation.

The MAC address must be in the six octet format. For example, DE-AD-BE-EF-FE-ED

See Also

More About
• “Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-

40

1 Configuration Parameters

1-116

ARM Cortex-M4 - UART

Enable UART Loopback
Select this check box to enable data transmission from Tx to Rx buffer. However, selecting this
option does not ensure that the data is present in the GPIO MUX.

Desired Baud rate (in bits/sec)
Specify the desired baud rate of the data transmission.

Closest Achievable Baud rate (in bits/sec)
The value in this parameter is calculated based on the desired baud rate that you specify and the
system clock frequency. This baud rate is used for the data transfer.

Number of stop bits
Select the number of stop bits used to indicate the end of a byte data transmission. The options
available:

• 1 – Select this option to indicate there is 1 stop bit at the end of a byte data transmission.
• 2 – Select this option to indicate there are 2 stop bits at the end of a byte data transmission.

Note User must ensure that the number of stop bits are same for both transmit and receive.

Parity mode

• Select a parity mode that is added at the end of a binary data for error detection.

The options available are:

• None — Select this option when no parity is used. This is the default option.
• Odd — Select this option to indicate that odd parity is used for data transmission.

In odd parity mode, the parity bit is set to ‘1’ if the sum of bits with the value ‘1’ is even
and the parity bit is set to ‘0’, if the sum of bits with the value ‘1’ is odd.

• Even — Select this option to indicate that even parity is used for data transmission.

In even parity mode, the parity bit is set to ‘1’, if the sum of bits with the value ‘1’ is odd
and the parity bit is set to ‘0’, if the sum of bits with the value ‘1’ is even.

• One — Select this option to indicate that the parity bit is always ‘1’.
• Zero — Select this option to indicate that the parity bit is always ‘0’.

Pin assignment(Tx)
Select a GPIO pin as the UART pin for data transmission. An external USB-to-serial chip should be
connected to this pin for serial communication with a PC.

Pin assignment(Rx)
Select a GPIO pin as UART pin for data reception. An external USB-to-serial chip should be
connected to this pin for serial communication with a PC.

Enable Receive Interrupt
This check box is enabled by default for updating DMA configuration after data receive. This will
trigger UART interrupt when DMA copies any data to FIFO.

 ARM Cortex-M4 - UART

1-117

Enable Transmit Interrupt
Select this parameter to trigger an ISR from an UART Transmit block. This will trigger UART
interrupt when DMA copies any data to FIFO.

See Also

More About
• “Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-

40

1 Configuration Parameters

1-118

C28x-ADC/C28x-ADC_A/C28x-ADC#

The high-speed peripheral clock (HSPCLK) or the system clock (SYSCLKOUT) controls the internal
timing of ADC modules. The ADC derives the operating clock speed from the HSPCLK/SYSCLKOUT
speed in several prescaler stages. For more information about configuring these scalers, see
“Configuring Acquisition Window Width for ADC Blocks”.

You can set the following parameters for the ADC clock prescaler:

Select the CPU core which controls ADC_x module
This parameter is available only for the dual-core processor F2837xD with the Build options >
Select CPU parameter set to CPU1.

The CPU core that controls the ADC module. When you select the Auto option for the ADC_x
module in a model, the ADC_x module is assigned to the CPU1 core during code generation if the
ADC_x block is present in the model, else it is assigned to the CPU2 core. If an ADC_x module is
assigned to a CPU core, you cannot use that module in a model that runs in the other CPU core.

ADC clock prescaler (ADCCLK)
Select the ADCCLK divider. This is specific to a processor.

ADC clock frequency in MHz
The clock frequency for ADC, which is auto generated based on the value you select in ADC
clock prescaler (ADCCLK).

ADC overlap of sample and conversion (ADC#NONOVERLAP)
Enable or disable overlap of sample and conversion.

ADC clock prescaler (ADCLKPS)
The HSPCLK is divided by ADCLKPS (a 4-bit value) as the first step in deriving the core clock
speed of the ADC. The default value is 3.

ADC Core clock prescaler (CPS)
After dividing the HSPCLK speed by the ADC clock prescaler (ADCLKPS) value, divides the
result by 2. The default value is 1.

ADC Module clock (ADCCLK = HSPCLK/ADCLKPS*2)/(CPS+1)) in MHz
The ADC module clock, which indicates the ADC operating clock speed.

Acquisition window prescaler (ACQ_PS)
This value determines the width of the sampling or acquisition period. The higher the value, the
wider is the sampling period. This value does not directly alter the core clock speed of the ADC.
The default value is 4.

Acquisition window size ((ACQ_PS+1)/ADCCLK) in micro seconds/channel
Acquisition window size determines the duration for which the sampling switch is closed. The
width of SOC pulse is ADCTRL1[11:8] + 1 times the ADCLK period.

Offset
Refer to the individual TRM for specifying the ADC offset values.

Use external reference 2.048VExternal reference
By default, an internally generated band gap voltage reference supplies the ADC logic. However,
depending on application requirements, you can enable the external reference so that the ADC
logic uses an external voltage reference instead.

 C28x-ADC/C28x-ADC_A/C28x-ADC#

1-119

Continuous mode
When the ADC generates an end of conversion (EOC) signal, an ADCINT# interrupt that indicates
whether the previous interrupt flag has been acknowledged or not is generated.

ADC offset correction (OFFSET_TRIM: –256 to 255)
The 280x ADC supports offset correction via a 9-bit value that it adds or subtracts before the
results are available in the ADC result registers. Timing for results is not affected. The default
value is 0.

VREFHIVREFLO
When you disable the Use external reference 2.048V or External reference option, the ADC
logic uses a fixed 0–3.3 volt input range, and VREFHI and VREFLO are disabled. To interpret the
ADC input as a ratiometric signal, select the External reference option. Then, set values for the
high voltage reference (VREFHI) and the low voltage reference (VREFLO). VREFHI uses the
external ADCINA0 pin, and VREFLO uses the internal GND.

INT pulse control
Set the time when the ADC sets ADCINTFLG ADCINTx relative to the SOC and EOC pulses.

SOC high priority
Enables SOC high priority mode. In all in round robin mode, the default selection, the
ADC services each SOC interrupt in a numerical sequence.

Choose one of the high priority selections to assign high priority to one or more of the SOCs.
In this mode, the ADC operates in round robin mode until it receives a high priority SOC
interrupt. The ADC finishes servicing the current SOC, services the high priority SOCs, and then
returns to the next SOC in the round robin sequence.

For example, the ADC is servicing SOC8 when it receives a high priority interrupt on SOC1. The
ADC completes servicing SOC8, services SOC1, and then services SOC9.

XINT2SOC external pin
The pin to which the ADC sends the XINT2SOC pulse.

ADCEXTSOC external pin
The GPIO pin from which ADC receives the ADCEXTSOC pulse.

Note

• For F2807x, F2837x, F28004x and F2838x processors the ADCEXTSOC external pin is
disabled.

• This parameter is available only for specific processors.

ADCEXTSOC Input X-BAR
Indicates the input X-BAR for ADC external SOC.

Note

• For F2807x, F2837x, F28004x and F2838x processors the ADCEXTSOC Input X-BAR is
disabled.

1 Configuration Parameters

1-120

• This parameter is available only for specific processors.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-ADC/C28x-ADC_A/C28x-ADC#

1-121

C28x-Build Options

Use the build options to specify how the build process takes place.

You can set the following parameters for build options:

Build action
Define how Embedded Coder responds when you build your model.

The Build, load and run option is supported for Texas Instruments Code Composer Studio
CCS v4 and the later versions.

If you select the Build, load and run option, you must provide the required CCS hardware
configuration file.

The TI Concerto F28M35x/F28M36x processors support only CCS v5 and the later versions. The
TI Delfino F2807x/F2837x processors support only CCS v6 and the later versions.

Device Name
Select a particular device from the selected processor family.

Disable parallel build

• on – When you select this option, the blockset compiles generated code and driver source
codes in sequential order.

• off – When you clear the selection, the blockset compiles generated code and driver source
codes parallely. Parallel execution reduces the time taken to build the model.

Enable TMU
This option enables support for Trigonometric Math Unit (TMU). Relaxed floating-point mode also
gets enabled as TMU hardware instructions are replaced only in relaxed floating point mode.

RTS library calls are replaced with the corresponding TMU hardware instructions for the
following floating-point operations: floating point division, sqrt, sin, cos, atan, and atan2.

Note

• There are algorithmic differences between the TMU hardware instructions and the library
routines, so the results of operations may differ slightly.

• This parameter is available only for specific C28x devices.

Boot From Flash (stand alone execution)
The option to specify if the application has to load to the flash. If you do not select this option, the
application loads to the RAM.

Use custom linker command file
Select this option, if you have your own custom linker file, which you can specify in the Linker
command file parameter. If you do not select this option, based on the device you have selected, a
default custom linker command file is used.

1 Configuration Parameters

1-122

Linker command file
For each family of TI processor selected under Target hardware resources, one linker
command file is selected automatically.

For a different variant of the processor, you can select the variant from the ‘src’ folder in the
blockset installation path. You can also create custom linker command file and select the file path
using the Browse button.

The linker command file path provided can be absolute or relative. If the path provided is relative,
the path must be selected with respect to the folder where the model is present or the code
generation folder.

CCS hardware configuration file
In the C2000 Microcontroller Blockset installation folder, open CCS_Config and select one of the
ccxml files.

Alternately, can use Code Composer Studio to create the ccxml file. In Code Composer Studio, go
to File > New > Target Configuration File. Select the file you created using the Browse
button. You can also edit the ccxml file using the Edit button.

The ccxml files provided with are as follows:

• f28027.ccxml—TI F28027 with Texas Instruments XDS100v1 USB Emulator
• f28035.ccxml—TI F28035 with Texas Instruments XDS100v1 USB Emulator
• f28069.ccxml—TI F28069 with Texas Instruments XDS100v1 USB Emulator
• f2808.ccxml—TI F2808 with Texas Instruments XDS100v1 USB Emulator
• f2808_eZdsp.ccxml—F2808 Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator
• f28044.ccxml—TI F28044 with Texas Instruments XDS100v1 USB Emulator
• f28335.ccxml—TI F28335 with Texas Instruments XDS100v1 USB Emulator
• f28335_eZdsp.ccxml—F28335 Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator
• f2812_BH2000.ccxml—Blackhawk USB2000 Controller for F2812 eZDSP
• f28x_generic.ccxml—Generic Texas Instruments XDS100v1 USB Emulator
• f28x_ezdsp_generic.ccxml—Generic Spectrum Digital eZdsp onboard USB Emulator
• f28x_ezdsp_generic.ccxml—Generic Spectrum Digital eZdsp onboard USB Emulator
• f28377S.ccxml—TI F2837xS with Texas Instruments XDS100v2 USB Emulator
• f28075.ccxml—TI F2807x with Texas Instruments XDS100v2 USB Emulator
• f28377D.ccxml—TI F2837xD with Texas Instruments XDS100v2 USB Emulator
• f28379D.ccxml—TI F2839xD with Texas Instruments XDS100v2 USB Emulator
• f28004x.ccxml—TI F28004x with Texas Instruments XDS100v2 USB Emulator

The ccxml files provided with C2000 Microcontroller Blockset are as follows:

• f28M35x.ccxml – Texas Instruments XDS100v2 USB Emulator_0
• f28M36x.ccxml – Texas Instruments XDS100v2 USB Emulator_0

Enable DMA to access ePWM Registers instead of CLA
The option that you can select to enable the DMA to access ePWM registers instead of CLA. This
option is available only for F2806x processors.

 C28x-Build Options

1-123

Enable DMA to peripheral frame 1 (ePWM, HRPWM, eCAP, eQEP, DAC, CMPSS, and SDFM)
instead of CLA

The option that you can select to enable the DMA to access peripheral frame 1 (ePWM, HRPWM,
eCAP, eQEP, DAC, CMPSS and SDFM) registers instead of CLA. This option is available only for
F2837xD, F2837xS, F2807x processors.

Enable DMA to peripheral frame 2 (SPI and McBSP) instead of CLA
The option that you can select to enable the DMA to access peripheral frame 2 (SPI and McBSP)
registers instead of CLA. This option is available only for F2837xD, F2837xS, F2807x processors.

Enable FastRTS
This option enables the use of optimized floating point math functions from C28x FPU fastRTS
library instead of standard RTS library functions.

By using FastRTS library routines, you can achieve execution speeds considerable faster without
rewriting existing code. This option is available only for F2806x, F2833x, F28M35x (C28x) and
F28M35x (C28x) processors.

Remap ePWMs for DMA access (Requires silicon revision A and above)
The option that you can select to remap ePWMs registers for DMA access. This option is available
only for F2833x processors.

Configure CLA program and data memory
Enable this option to configure LSRAM memory for CLA program or data.

Maximum LSRAM size for CLA program (in KW)
Select the maximum LSRAM size that you can allocate for CLA program in KiloWords.

Note Ensure memory allocation for CLA program and data is within the total available LSRAM
memory of the selected processor.

Maximum LSRAM size for CLA data (in KW)
Select the maximum LSRAM size that you can allocate for CLA data in KiloWords (KW).

Note Ensure memory allocation for CLA program and data is within the total available LSRAM
memory of the selected processor.

Available LSRAM size for CPU (in KW)
Displays the remaining available LSRAM size for CPU in KiloWords.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-124

C28x-Clocking

Use the clocking options to achieve the CPU clock rate specified on the board. The default clocking
values run the CPU clock (CLKIN) at its maximum frequency. The parameters use the external
oscillator frequency on the board (OSCCLK) that is recommended by the processor vendor.

For F2837xD and F2838xD dual-core processor, the clock settings are available only when you select
the CPU1 option in the Build options > Select CPU parameter. When you select CPU2 option in the
Build options > Select CPU parameter, set the CPU clock with the value available in the
Achievable SYSCLKOUT in MHz parameter for the CPU1 model.

You can get feedback on the closest achievable SYSCLKOUT value with the specified oscillator clock
frequency by selecting the Auto set PLL based on OSCCLK and CPU clock check box.
Alternatively, you can manually specify the PLL value for the SYSCLKOUT value calculation.

Change the clocking values if:

• You want to change the CPU frequency.
• The external oscillator frequency differs from the value recommended by the manufacturer.

To determine the CPU frequency (CLKIN), use the following equation:

CLKIN = (OSCCLK × PLLCR) / (DIVSEL or CLKINDIV)

Where,

• CLKIN is the frequency at which the CPU operates, also known as the CPU clock.
• OSCCLK is the frequency of the oscillator.
• PLLCR is the PLL control register value.
• CLKINDIV is the clock in the divider.
• DIVSEL is the divider select.

The availability of the DIVSEL or CLKINDIV parameters changes depending on the processor that
you select. If neither parameter is available, use the following equation:

CLKIN = (OSCCLK × PLLCR) / 2

You can set the following parameters for clocking:

Desired C28x CPU clock in MHz
Specify the desired CPU clock frequency (CLKIN). This value is taken automatically for
Achievable SYSCLKOUT in MHz = (OSCCLK×PLLCR)/DIVSEL.

CPU Clock in MHz (C28SYSCLK/SYSCLKOUT)
Enter the value that you specified for Desired C28x CPU clock in MHz. This parameter is
available only for TI Concerto F28M35x/ F28M36x processors. For more information, see the PLL-
Based Clock Module section in the Texas Instruments Reference Guide for your processor.

Use internal oscillator
Use the internal zero pin oscillator on the CPU. This parameter is enabled by default.

 C28x-Clocking

1-125

Oscillator clock (OSCCLK) frequency in MHz
Oscillator frequency used in the processor. This parameter is not available for TI Concerto
F28M35x/ F28M36x processors.

Note By default the clock source value is set to 20MHz. Ensure that the newer versions of TI
F2838x control cards have clock source value set to 20MHz if they have different value.

Auto set PLL based on OSCCLK and CPU clock
PLL values in PLLCR, DIVSEL, and Achievable SYSCLKOUT in MHz are automatically
calculated based on the CPU clock entered on the board. This parameter is not available for TI
Concerto F28M35x/ F28M36x processors.

PLL control register (PLLCR)
If you select Auto set PLL based on OSCCLK and CPU clock, the auto calculated control
register value achieves the specified CPU clock value, based on the oscillator clock frequency.
Alternatively, you can select a value for PLL control register (PLLCR). This parameter is not
available for TI Concerto F28M35x/ F28M36x processors.

PLL output divider (ODIV)
Calculates SYSCLKOUT = ((OSCCLK×SYSPLLMULT)/ODIV)/SYSDIVSEL.

Clock divider (DIVSEL)
If you select Auto set PLL based on OSCCLK and CPU clock, the auto calculated control
register value achieves the specified CPU clock value, based on the oscillator clock frequency.
Alternatively, you can select a value for Clock divider (DIVSEL). This parameter is not available
for TI Concerto F28M35x/ F28M36x processors.

Achievable SYSCLKOUT in MHz = (OSCCLK×PLLCR)/DIVSEL
The auto calculated feedback value that matches the Desired C28x CPU clock in MHz value,
based on the values of OSCCLK, PLLCR, and DIVSEL. This parameter is not available for TI
Concerto F28M35x/ F28M36x processors.

Set the 'Achievable SYSCLKOUT in MHz = (OSCCLK*SYSPLLMULT)/SYSDIVSEL' value
calculated in CPU1

Available only for CPU2 of dual C28x core processors. Value of this parameter must be same as
the value of the parameter Achievable SYSCLKOUT in MHz = (OSCCLK*PLLCR)/DIVSEL
(auto calculated).

Select the 'Low-Speed Peripheral Clock Prescaler (LSPCLK)' option used in CPU1
Available only for CPU2 of dual C28x core processors. Value of this parameter must be same as
the value of the parameter Low-Speed Peripheral Clock Prescaler (LSPCLK) specified in
CPU1.

Low-Speed Peripheral Clock Prescaler (LSPCLK)
The value using which LSPCLK is scaled. This value is based on SYSCLKOUT.

Low-Speed Peripheral Clock (LSPCLK) in MHz
The value is calculated based on LSPCLK Prescaler. Example: SPI uses a LSPCLK.

High-Speed Peripheral Clock Prescaler (HSPCLK)
The value using which HSPCLK is scaled. This value is based on SYSCLKOUT.

High-Speed Peripheral Clock (HSPCLK) in MHZ
The value is calculated based on HSPCLK Prescaler. Example: ADC uses a HSPCLK.

1 Configuration Parameters

1-126

Analog Subsystem Clock Prescaler (ASYSCLK)
The value using which ASYSCLK is scaled. This value is based on SYSCLKOUT. This option is
available only for TI Concerto F28M35x/ F28M36x processors.

Analog Subsystem Clock (ASYSCLK)
The value calculated using the SYSCLKOUT and ASYSCLK Prescaler values. This option is
available only for TI Concerto F28M35x/ F28M36x processors.

Connectivity Manager (ARM Cortex-M) clock source
Select the clock source for ARM Cortex-M core. This feeds the CM clock divider. Currently, only
System PLL is supported as the clock source. This option is available only for TI F2838x (C28x)
processors.

Connectivity Manager (ARM Cortex-M) clock divider
Select the divider for the ARM Cortex-M core clock. This divider is acted upon the signal from
clock source to get the ARM Cortex-M core clock. This option is available only for TI F2838x
(C28x) processors.

Connectivity Manager (ARM Cortex-M) clock in MHz
The calculated value of the clock frequency (in MHz) supplied to ARM Cortex-M core. This option
is available only for TI F2838x (C28x) processors.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-Clocking

1-127

C28x-DAC

DACx reference voltage

Select the reference voltage for the DAC channel A, B, or C. In this case, x represents the DAC
channel A, B, or C.

• ADC reference voltage (VREFHIA/VREFHIB) — The reference voltage used for the ADC. You
can use this as reference voltage VREFHIA for DAC A, DAC B and VREFHIB for DAC C.

• External reference voltage through ADCINB0 (VDAC) — A separate external reference voltage
for DAC. Ensure that you connect the ADCINB0 pin to the supply voltage.

DACx synchronization signal
Select the synchronization signal to load the value from the writable shadow register into the
active register. In this case, x represents the DAC channel A, B, or C.

• SYSCLK — Loads the value from the writable shadow register DACVALS into the active
register DACVALA on the next clock cycle.

• PWMSYNC1–12 (EPWMxSYNCPER) — Loads the value from the writable shadow register
DACVALS into the active register DACVALA on the next PWM synchronization event.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-128

C28x-COMP

Assign COMP pins to GPIO pins.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-COMP

1-129

C28x-DMA_ch#

The Direct Memory Access (DMA) module transfers data directly between peripherals and memory
using a dedicated bus, increasing overall system performance. In this case, # represents the DMA
channel number.

You can individually enable and configure each DMA channel.

The DMA module services are event driven. Using the Interrupt source parameter, you can
configure a wide range of peripheral interrupt event triggers. For more information, see the technical
reference manual of your processor.

You can set the following parameters for DMA:

Enable DMA channel
Enable this parameter to edit the configuration of a specific DMA channel. This parameter does
not have a corresponding bit or register.

Data size
Select the size of the data bit transfer.

The DMA read/write data buses are 32 bits wide. 32-bit transfers have twice the data throughput
of a 16-bit transfer.

When providing DMA service to McBSP, set Data size to 16 bit.

The following parameters are based on a 16-bit word size. If you set Data size to 32 bit, double
the value of the following parameters:

• Size: Burst
• Source: Burst step
• Source: Transfer step
• Source: Wrap step
• Destination: Burst step
• Destination: Transfer step
• Destination: Wrap step

Data size corresponds to bit 14 (DATASIZE) in the mode register (MODE).
Interrupt source

Select the peripheral interrupt that triggers a DMA burst for the specified channel.

Different C2000 processors have different interrupt trigger options that can be configured to
trigger the DMA. Depending on the processor, the trigger sources include peripheral interrupts
from ePWM, ADC, SPI, timer, and external interrupt. Some of these interrupt triggers such as
TINT0 may require manual configuration. For external interrupt using GPIO, the configuration is
done in the External Interrupt tab.

The Interrupt source parameter corresponds to bit 4–0 (PERINTSEL) in the mode register
(MODE).

1 Configuration Parameters

1-130

Burst size
Specify the number of 16-bit words in a burst, from 1 to 32. The DMA module must complete a
burst before it can service the next channel.

Set the burst size for the peripheral DMA module services. For the ADC, the value equals the
number of ADC registers used, up to 16. For multichannel buffered serial ports (McBSP), which
lack FIFOs, the value is 1.

For RAM, the value can range from 1–32.

This parameter corresponds to bits 4–0 (BURSTSIZE) in the burst size register (BURST_SIZE).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

Transfer size
Specify the number of bursts in a transfer, from 1–65536.

This parameter corresponds to bits 15–0 (TRANSFERSIZE) in the transfer size register
(TRANSFER_SIZE).

Source begin address
Set the starting address for the current source address pointer. The DMA module points to this
address at the beginning of a transfer and returns to it as specified by the SRC wrap parameter.

This parameter corresponds to bits 21–0 (BEGADDR) in the active source begin register
(SRC_BEG_ADDR).

Destination begin address
Set the starting address for the current destination address pointer. The DMA module points to
this address at the beginning of a transfer and returns to it as specified by the DST wrap
parameter.

This parameter corresponds to bits 21–0 (BEGADDR) in the active destination begin register
(DST_BEG_ADDR).

Source burst step
Set the number of 16-bit words using which the current address pointer is incremented or
decremented before the next burst. Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Burst step to 0. For example,
because McBSP does not use FIFO, configure DMA to maintain the sequence of the McBSP data
by moving each word of the data individually.

Accordingly, when you use DMA to transmit or receive McBSP data, set Burst size to 1 word and
Burst step to 0.

This parameter corresponds to bits 15-0 (SRCBURSTSTEP) in the source burst step size register
(SRC_BURST_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

 C28x-DMA_ch#

1-131

Destination burst step
Set the number of 16-bit words using which the current address pointer is incremented or
decremented before the next burst. Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Burst step to 0. For example,
because McBSP does not use FIFO, configure DMA to maintain the sequence of the McBSP data
by moving each word of the data individually. Accordingly, when you use DMA to transmit or
receive McBSP data, set Burst size to 1 word and Burst step to 0.

This parameter corresponds to bits 15–0 (DSTBURSTSTEP) in the destination burst step size
register (DST_BURST_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

Source transfer step
Set the number of 16-bit words using which the current address pointer is incremented or
decremented before the next transfer. Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Transfer step to 0.

This parameter corresponds to bits 15–0 (SRCTRANSFERSTEP) source transfer step size register
(SRC_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (SRC wrap enabled), the corresponding
source Transfer step does not alter the results.

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

Destination transfer step
Set the number of 16-bit words using which the current address pointer is incremented or
decremented before the next transfer. Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Transfer step to 0.

This parameter corresponds to bits 15–0 (DSTTRANSFERSTEP) destination transfer step size
register (DST_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (DST wrap enabled), the corresponding
destination Transfer step does not alter the results.

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

Source wrap size
Specify the number of bursts before returning the current source address pointer to the Source
Begin Address value. To disable wrapping, enter a value that is greater than the Transfer value.

1 Configuration Parameters

1-132

This parameter corresponds to bits 15-0 (SRC_WRAP_SIZE) in the source wrap size register
(SRC_WRAP_SIZE).

Destination wrap size
Specify the number of bursts before returning the current destination address pointer to the
Destination Begin Address value. To disable wrapping, enter a value that is greater than the
Transfer value.

This parameter corresponds to bits 15-0 (DST_WRAP_SIZE) in the destination wrap size register
(DST_WRAP_SIZE).

Source wrap step
Set the number of 16-bit words using which the SRC_BEG_ADDR address pointer is incremented
or decremented when a wrap event occurs. Enter a value from –4096 (decrement) to 4095
(increment).

This parameter corresponds to bits 15–0 (WRAPSTEP) in the source wrap step size registers
(SRC_WRAP_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

Destination wrap step
Set the number of 16-bit words using which the DST_BEG_ADDR address pointer is incremented
or decremented when a wrap event occurs. Enter a value from –4096 (decrement) to 4095
(increment).

This parameter corresponds to bits 15–0 (WRAPSTEP) in the destination wrap step size registers
(DST_WRAP_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit, double the
value of this parameter.

Set channel 1 to highest priority
This parameter is available only for DMA_ch1.

Enable this option when DMA channel 1 is configured to handle high-bandwidth data, such as
ADC data, and the other DMA channels are configured to handle lower-priority data. When
enabled, the DMA module services each enabled channel sequentially until it receives a trigger
from channel 1. Upon receiving the trigger, DMA interrupts its service to the current channel at
the end of the current word, services the channel 1 burst that generated the trigger, and then
continues servicing the current channel at the beginning of the next word.

Disable this channel to give each DMA channel equal priority, or if DMA channel 1 is the only
enabled channel. When disabled, the DMA module services each enabled channel sequentially.

This parameter corresponds to bit 0 (CH1PRIORITY) in the priority control register 1
(PRIORITYCTRL1).

 C28x-DMA_ch#

1-133

Enable first DMA event to trigger the full transfer (one shot mode)
Enable this parameter to have the DMA channel complete an entire transfer in response to an
interrupt event trigger.

This option allows a single DMA channel and peripheral to dominate resources, and may
streamline processing, but it also creates the potential for resource conflicts and delays.

Disable this parameter to have DMA complete one burst per channel per interrupt.

This parameter appears only when Set channel 1 to highest priority is disabled.
Synchronize ADC interrupt event triggers to DMA wrap counter (sync mode)

Enable this parameter to reset the DMA wrap counter when the Interrupt source is set to
SEQ1INT and sends the ADCSYNC signal to the DMA wrap counter. This way, the wrap counter
and the ADC channels remain synchronized with each other.

If Interrupt source is not set to SEQ1INT, Sync enable does not alter the results.

This parameter corresponds to bit 12 (SYNCE) of the mode register (MODE).
Do not disable the DMA channel after the transfer is complete (continuous mode)

Select this parameter to leave the DMA channel enabled upon completing a transfer. The channel
waits for the next interrupt event trigger.

Clear this parameter to disable the DMA channel upon completing a transfer. The DMA module
disables the DMA channel by clearing the RUNSTS bit in the control register when it completes
the transfer. To use the channel again, first reset the RUN bit in the control register.

Enable destination sync mode
Enabling this parameter resets the destination wrap counter (DST_WRAP_COUNT) when Sync
enable is enabled and the DMA module receives the SEQ1INT interrupt/ADCSYNC signal.

Disabling this parameter resets the source wrap counter (SCR_WRAP_COUNT) when the DMA
module receives the SEQ1INT interrupt/ADCSYNC signal.

This parameter is associated with bit 13 (SYNCSEL) in the mode register (MODE).

This parameter appears only when Synchronize ADC interrupt event triggers to DMA wrap
counter (sync mode) is selected.

Generate interrupt
Enable this parameter to have the DMA channel send an interrupt to the CPU via the PIE at the
beginning or end of a data transfer.

This parameter corresponds to bit 15 (CHINTE) and bit 9 (CHINTMODE) in the mode register
(MODE).

Enable overflow interrupt
Enable this parameter to have the DMA channel send an interrupt to the CPU via PIE if the DMA
module receives a peripheral interrupt while a previous interrupt from the same peripheral is
waiting to be serviced.

This parameter is used for debugging during the development phase of a project.

1 Configuration Parameters

1-134

The Enable overflow interrupt parameter corresponds to bit 7 (OVRINTE) of the mode register
(MODE), and involves the overflow flag bit (OVRFLG) and peripheral interrupt trigger flag bit
(PERINTFLG).

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-DMA_ch#

1-135

C28x-eCAN_A, C28x-eCAN_B

You can set the following parameters for the eCAN module:

CAN module clock frequency (= SYSCLKOUT) in MHz
The clock to the enhanced CAN module. The CAN module clock frequency is equal to
SYSCLKOUT for processors such as c280x, c281x, c28044.

CAN module clock frequency (=SYSCLKOUT/2) in MHz
The clock to the enhanced CAN module. The CAN module clock frequency is equal to
SYSCLKOUT/2 for processors such as piccolo, c2834x, c28x3x.

Baud rate prescaler (BRP: 2 to 256)/Baud rate prescaler (BRP: 1 to 1024)
The value using which bit rate is scaled.

Time segment 1 (TSEG1):
Set the value of time segment 1. This value, with TSEG2 and Baud rate prescaler, determines
the length of a bit on the eCAN bus. Valid values for TSEG1 are from 1 through 16.

Time segment 2 (TSEG2):
Set the value of time segment 2. This value, with TSEG1 and Baud rate prescaler, determines
the length of a bit on the eCAN bus. Valid values for TSEG2 are from 1 through 8.

Baud rate (CAN Module Clock/BRP/(TSEG1 + TSEG2 +1)) in bits/sec:
CAN module communication speed represented in bits/sec.

SBG
Set the message resynchronization triggering.

SJW
Set the synchronization jump width, which determines how many units of TQ a bit can be
shortened or lengthened when resynchronizing. Where, TQ=Baud Rate Prescaler/CAN_CLK.

SAM
Number of samples used by the CAN module to determine the CAN bus level. Selecting
Sample_one_time samples once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a distance of TQ/2. The CAN module
makes a majority decision from the three points.

Enhanced CAN Mode
Enable time-stamping and usage of Mailbox Numbers 16 through 31 in the C2000 eCAN blocks.
Texas Instruments documentation refers to this as “HECC mode”.

Self test mode
If you set this parameter to True, the eCAN module goes to loopback mode. The loopback mode
sends a “dummy” acknowledge message back. This mode does not need an acknowledge bit. The
default is False.

Pin assignment (Tx)
Assign the CAN transmit pin to use with the eCAN_B module.

Pin assignment (Rx)
Assign the CAN receive pin to use with the eCAN_B module.

1 Configuration Parameters

1-136

For more information about setting the timing parameters for the eCAN modules, see “Configuring
Timing Parameters for CAN Blocks”.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-eCAN_A, C28x-eCAN_B

1-137

C28x-eCAP

Assign eCAP pins to GPIO pins.

ECAP# Input X-BAR
Select the input X-BAR for eCAP. This parameter is available only for specific processors.

ECAP# capture pin assignment
Indicates the GPIO pin used for eCAP in capture mode.

Note

• For F2807x, F2837x, F28004x, F28002x, and F2838x processors the ECAP# capture pin
assignment is disabled.

• This parameter is available only for specific processors.

ECAP# APWM pin assignment
Assign eCAP APWM pins to GPIO pins. This parameter is available only for specific processors.

Note When configuring eCAP APWM pin assignment, the Output Xbar GPIO is also set in Output
Xbar tab.

eCAPxSYNCIN source selection
Indicates the SYNC source select register for the ePWM SYNCOUT, eCAP SYNCOUT, INPUTXBAR
and EtherCATSYNC. You can also set the SYNCIN to Disabled.

Note

• The default eCAPxSYNCIN source selection value varies based on the processor selected.
• For processors F28004x/F2837xD/F2837xS/F2807x, EXTSYNCIN1 and EXTSYNCIN2 are

mapped to Input X-BAR 5 and Input X-BAR 6 respectively.

Output X-BAR
Indicates which Output X-BAR is used for the selected ECAP# APWM pin assignment
parameter. This parameter is available only for specific processors.

Note

• For F2807x, F2837x, F28004x, F28002x, and F2838x processors the Output X-BAR is disabled.
• This parameter is available only for specific processors.

1 Configuration Parameters

1-138

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-eCAP

1-139

C28x-EMIF

Use the external memory interface (EMIF) to connect the C2000 processor to an external
synchronous or asynchronous memory.

For C2000 processors, the EMIF is supported for these memory devices:

• Synchronous memory interface — JESD21-C SDR SDRAM
• Asynchronous memory interface — SRAM, NOR Flash, or any external device

Based on the processors, the number of EMIF modules supported varies. When you configure the
EMIF interface based on the memory used, the GPIO pins required for interacting with the memory
through EMIF are also configured. You must ensure that these GPIO pins are not used with other
peripherals or as input/output because these pins are not included in the existing conflict check.

The EMIF1 pin configuration for synchronous and asynchronous memory is:

• GPIO38 – GPIO52 (except GPIO42 and GPIO43) are configured as address pins A0 – A12.
• GPIO86 and GPIO87 are configured as address pins A13 and A14 only when asynchronous

memory is selected. GPIO86 and GPIO87 are configured as row and column address select (RAS
and CAS) when synchronous memory is selected.

• GPIO69 – GPIO85 are configured as data pins D15 – D0. GPIO53 – GPIO68 are configured as data
pins D31 – D16 only for 32-bit memory configuration.

• GPIO88 – GPIO91 are configured as data mask pins DQM0 – DQM3. You can manually configure
these pins using custom code as address pins A15 – A18 when the EMIF is configured only for 8-
bit asynchronous memory.

• GPIO92 and GPIO93 are configured as banks BA1 and BA0.
• GPIO28 – GPIO37 are configured as chip select (CS2, CS3, and CS4), clock enable (SDCKE), clock

(CLK), write enable (WE), read and write control (RNW), wait pin (WAIT), and enable pin (OE).

The EMIF2 pin configuration for synchronous and asynchronous memory is:

• GPIO98 – GPIO109 are configured as address pins A0 – A11.
• GPIO53 – GPIO68 are configured as data pins D15 – D0.

An error message is displayed if the EMIF2 CS# is selected when the EMIF1 is configured for 32-
bit data width because the same GPIO pins are used as D31 – D16 for the EMIF1 in 32-bit
configuration.

• GPIO96 – GPIO97 are configured as data mask pins DQM0 – DQM1.
• GPIO111 and GPIO112 are configured as banks BA1 and BA0.
• GPIO110 and GPIO113 – GPIO121 are configured as chip select (CS0 and CS2), row and column

address select (RAS and CAS), clock enable (SDCKE), clock (CLK), write enable (WE), read and
write control (RNW), wait pin (WAIT), and enable pin (OE).

You can set these parameters for the EMIF:

EMIF clock divider (EMIF#CLKDIV)
Select the clock divider for the EMIF# module clock generation. In this case, # represents the
number of the EMIF module. The EMIF clock frequency is based on SYSCLKOUT.

1 Configuration Parameters

1-140

Enable CS0 for Synchronous memory
Select the chip select (CS0) to interface with the synchronous dynamic RAM (SDRAM).
Synchronous memory supports the following memory sizes and addresses:

• EMIF1_CS0 — Data memory of size 256M × 16 with an address range of 0x80000000 to
0x8FFFFFFF

• EMIF2_CS0 — Data memory of size 3M × 16 with an address range of 0x90000000 to
0x91FFFFFF

Creation and usage of variables in SDRAM require the use of volatile qualifier and far attribute.
Use #pragma to place the variables in SDRAM memory sections. Custom storage classes
EM1_CS0_MEMORY and EM2_CS0_MEMORY are created in the signal object class
tic2000demospkg.Signal to handle these requirements. You can use these custom storage
classes to create variables using the Data Store Memory blocks.

Enable CS# for Asynchronous memory
Select the chip select (CS2/CS3/CS4) to interface with the asynchronous memory (SRAM / NOR
Flash). Asynchronous memory supports the following memory sizes and addresses:

• EMIF1_CS2 — Data memory of size 2M × 16 with an address range of 0x00100000 to
0x002FFFFF

• EMIF1_CS3 — Data memory of size 512k × 16 with an address range of 0x00300000 to
0x0037FFFF

• EMIF1_CS4 — Data memory of size 393k × 16 with an address range of 0x00380000 to
0x003DFFFF

• EMIF2_CS2 — Data memory of size 4k × 16 with an address range of 0x00002000 to
0x00002FFF

Use #pragma to place the variables in asynchronous memory sections. Custom storage classes
EM1_CS2_MEMORY, EM1_CS3_MEMORY, EM1_CS4_MEMORY, and EM2_CS2_MEMORY are
created in the signal object class tic2000demospkg.Signal to handle these requirements. You
can use these custom storage classes to create variables using the Data Store Memory blocks.

SDRAM column address bits
Select the value of the column address bits, thereby selecting the required page size of the
connected SDRAM. Column address bits 8, 9, 10, and 11 corresponding to 256, 512, 1024, and
2048-word pages are supported.

The parameter Page size = (2^column address bits) is calculated based on the SDRAM
column address bits parameter value.

Number of internal SDRAM banks
Select the number of memory banks inside the connected SDRAM. SDRAM with 1, 2, and 4 banks
are supported.

SDRAM data bus width in bits
Select the data bus width of the connected SDRAM. Data bus widths of 16- and 32-bit are
supported.

Refresh to active command delay cycles (T_RFC)
The minimum number of EM#CLK cycles from the refresh or load mode command to the refresh
or activate command in the connected SDRAM. In this case, # represents 1 or 2. Some devices
refer to this parameter as minimum auto refresh period.

 C28x-EMIF

1-141

The parameter t_rfc in ns = (T_RFC+1)/fEM#CLK is calculated based on the Refresh to
active command delay cycles (T_RFC) parameter value.

Row precharge to active command delay cycles (T_RP)
The minimum number of EM#CLK cycles required from the row precharge command to the
activate or refresh command in the connected SDRAM.

The parameter t_rp in ns = (T_RP+1)/fEM#CLK is calculated based on the Row precharge to
active command delay cycles (T_RP) parameter value.

Active to read or write command delay cycles (T_RCD)
The minimum number of EM#CLK cycles from the activate command to the read or write
command in the connected SDRAM.

The parameter t_rcd in ns = (T_RCD+1)/fEM#CLK is calculated based on the Active to read
or write command delay cycles (T_RCD) parameter value.

Last write to row precharge command delay cycles (T_WR)
The minimum number of EM#CLK cycles from the last write transfer or last data in command to
the row precharge command in the connected SDRAM.

The parameter t_wr in ns = (T_WR+1)/fEM#CLK is calculated based on the Last write to row
precharge command delay cycles (T_WR) parameter value.

Active to precharge command delay cycles (T_RAS)
The minimum number of EM#CLK cycles from the activate command to the row precharge
command in the connected SDRAM.

The parameter t_ras in ns = (T_RAS+1)/fEM#CLK is calculated based on the Active to
precharge command delay cycles (T_RAS) parameter value.

Active to active command delay cycles (T_RC)
The minimum number of EM#CLK cycles from an activate command to the next activate
command in the same bank in the connected SDRAM. This is also known as the minimum auto
refresh period.

The parameter t_rc in ns = (T_RC+1)/fEM#CLK is calculated based on the Active to active
command delay cycles (T_RC) parameter value.

Active one bank to active another bank command delay cycles (T_RRD)
The minimum number of EM#CLK cycles from an activate command in one bank to an activate
command in a different bank in the connected SDRAM.

The parameter t_rrd in ns = (T_RRD+1)/fEM#CLK is calculated based on the Active one
bank to active another bank command delay cycles (T_RRD) parameter value.

Self-refresh exit to other command delay cycles (T_XSR)
The minimum number of EM#CLK cycles from the self refresh exit command to any other
command in the connected SDRAM.

The parameter t_xsr in ns = (T_XSR+1)/fEM#CLK is calculated based on the Self-refresh exit
to other command delay cycles (T_XSR) parameter value.

SDRAM refresh period (tRefreshPeriod) in ms
REFRESH_RATE for SDRAM defines the rate at which the connected SDRAM refreshes. SDRAM
refresh rate depends on the values of SDRAM refresh period (tRefreshPeriod) in ms and

1 Configuration Parameters

1-142

SDRAM refresh cycle (ncycles). Enter the SDRAM refresh period and SDRAM refresh cycles
from the SDRAM datasheet. The SDRAM refresh rate is calculated based on the formula
tRefreshPeriod * EMIF clock frequency / ncycles.

SDRAM CAS Latency
Select the CAS latency required to access the connected SDRAM. SDRAM devices with CAS
latencies of 2 and 3 are supported.

Asynchronous mode
Select the asynchronous mode for the connected asynchronous memory. These are the available
modes:

• Normal — The byte enable will be active during the entire asynchronous cycle.
• Strobe — The byte enable will be active only during the strobe period of the access cycle

mode.

Asynchronous data bus width in bits
Select the data bus width of the connected asynchronous memory. Asynchronous memory data
bus width of 8-, 16-, and 32-bit are supported.

Read strobe setup cycles (R_SETUP)
The number of EM#CLK cycles from the EMIF chip select to the pin enable for asynchronous
memory assert.

The parameter t_r_setup in ns = (R_SETUP+1)/fEM#CLK is calculated based on the Read
strobe setup cycles (R_SETUP) parameter value.

Read strobe duration cycles (R_STROBE)
The number of EM#CLK cycles during which the pin enable for the asynchronous memory is held
active.

The parameter t_r_strobe in ns = (R_STROBE+1)/fEM#CLK is calculated based on the Read
strobe duration cycles (R_STROBE) parameter value.

Read strobe hold cycles (R_HOLD)
The number of EM#CLK cycles during which the EMIF chip select is held active after pin enable
for the asynchronous memory is deasserted.

The parameter t_r_hold in ns = (R_HOLD+1)/fEM#CLK is calculated based on the Read
strobe hold cycles (R_HOLD) parameter value.

Write strobe setup cycles (W_SETUP)
The number of EM#CLK cycles from the EMIF chip select to the write enable for the
asynchronous memory assert.

The parameter t_w_setup in ns = (W_SETUP+1)/fEM#CLK is calculated based on the Read
strobe hold cycles (R_HOLD) parameter value.

Write strobe duration cycles (W_STROBE)
The number of EM#CLK cycles during which the write enable for the asynchronous memory is
held active.

The parameter t_w_strobe in ns = (W_STROBE+1)/fEM#CLK is calculated based on the
Write strobe duration cycles (W_STROBE) parameter value.

 C28x-EMIF

1-143

Write strobe hold cycles (W_HOLD)
The number of EM#CLK cycles during which the EMIF chip select is held active after write
enable for the asynchronous memory is deasserted.

The parameter t_w_hold in ns = (W_HOLD+1)/fEM#CLK is calculated based on the Write
strobe hold cycles (W_HOLD) parameter value.

Turn around cycles (TA)
The number of EM#CLK cycles between the end of one asynchronous memory access and the
start of another asynchronous memory access. This delay is not incurred between a read followed
by a read or a write followed by a write to the same chip select.

Enable extended wait mode
Select this option to enable the extended wait option for the asynchronous memory. This option
can be used if extended asynchronous wait cycles are required based on the EM#WAIT pin.

Maximum extended wait cycles for Asynchronous memory (MAX_EXT_WAIT) [0–255]
This option is enabled if extended wait for any of the asynchronous memory CS# is enabled.
Based on the value entered, the EMIF waits for (MAX_EXT_WAIT+1) * 16 clock cycles before the
asynchronous cycle is terminated.

Pin polarity of extended wait
Select the option to make the EMIF wait if the pin is low or high. This option is enabled when the
extended wait mode of any of the asynchronous memory CS2/CS3/CS4 is enabled.

Enable wait rise interrupt
Select this option to get an interrupt based on the detection of a rising edge on the EM#WAIT
pin. This option is enabled when the extended wait mode of any of the asynchronous memory
CS2/CS3/CS4 is enabled.

Enable timeout interrupt
Select this option to get an interrupt when the EM#WAIT pin does not become inactive within the
number of cycles defined in Maximum extended wait cycles for Asynchronous memory
(MAX_EXT_WAIT) [0–255]. This option is enabled when the extended wait mode of any of the
asynchronous memory CS2/CS3/CS4 is enabled.

Enable line trap interrupt
Select this option to get an interrupt when there is an invalid cache line size or illegal memory
access.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-144

C28x-ePWM

Assign ePWM signals to GPIO pins.

The ePWM X-BAR brings signals to the ePWM modules. Specifically, the ePWM X-BAR is connected to
the Digital Compare (DC) submodule of each ePWM module for actions such as tripzones and
syncing. You can set the following parameters for ePWM:

EPWM clock divider (EPWMCLKDIV)
Select the ePWM clock divider. This parameter is available only for F2807x, F2837x, F2838x
processors.

Select the 'EPWM clock divider (EPWMCLKDIV)' option used for CPU1
Available only for CPU2 of dual C28x core processors. Its value must be the same as the value of
the parameter EPWM clock divider (EPWMCLKDIV) selected in CPU1.

TZx Input X-BAR
Indicates the trip-zone input X-BAR.

Note This parameter appears only for specific processors.

TZx pin assignment
Assign the trip-zone input x (TZx) to a GPIO pin.

Note

• For F2807x, F2837x, F28004x and F2838x processors the TZx pin assignment is disabled.
• The TZ# pin assignments are available only for TI F280x processors.

TRIP# MUX select
Select the MUX to map the signal to the MUX output.

Selecting Disable all will indicate that all MUXes are disabled and the TRIP X-BAR# is not
configured.

This parameter appears only for specific processors.
Select MUX input

Select the input to the MUX selected in TRIP# MUX select.

The F2807x, F2837x, F2838x, F28002x, F28004x and F28003x processors support ePWM X-BAR.
For more information, refer to TI Technical Reference Manual of there respective processors.

Select the input signals for the MUX which is sent to the ePWM module. You can select one signal
per MUX. The input signal to the MUX varies based on the MUX selected and processor.

The following table lists the TRIP MUX select and Select MUX input for C28x processor F2838x.
The row headers 0-3 represent the Select MUX input and column headers 0-31 represent the
TRIP MUX select.

 C28x-ePWM

1-145

ePWM X-BAR Mux Configuration Table - F2838x

Select MUX

INPUT

0 1 2 3

TRIP# MUX

select
0 CMPSS1.CTRIPH CMPSS1.CTRIPH

OR CTRIPL
ADCAEVT1 ECAP1.OUT

1 CMPSS1.CTRIPL INPUTXBAR1 CLB1_4.1 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH

OR CTRIPL
ADCAEVT2 ECAP2.OUT

3 CMPSS2.CTRIPL INPUTXBAR2 CLB1_5.1 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH

OR CTRIPL
ADCAEVT3 ECAP3.OUT

5 CMPSS3.CTRIPL INPUTXBAR3 CLB2_4.1 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH

OR CTRIPL
ADCAEVT4 ECAP4.OUT

7 CMPSS4.CTRIPL INPUTXBAR4 CLB2_5.1 ADCCEVT4
8 CMPSS5.CTRIPH CMPSS5.CTRIPH

OR CTRIPL
ADCBEVT1 ECAP5.OUT

9 CMPSS5.CTRIPL INPUTXBAR5 CLB3_4.1 ADCDEVT1
10 CMPSS6.CTRIPH CMPSS6.CTRIPH

OR CTRIPL
ADCBEVT2 ECAP6.OUT

11 CMPSS6.CTRIPL INPUTXBAR6 CLB3_5.1 ADCDEVT2
12 CMPSS7.CTRIPH CMPSS7.CTRIPH

OR CTRIPL
ADCBEVT3 ECAP7.OUT

13 CMPSS7.CTRIPL ADCSOCA CLB4_4.1 ADCDEVT3
14 CMPSS8.CTRIPH CMPSS8.CTRIPH

OR CTRIPL
ADCBEVT4 EXTSYNCOUT

15 CMPSS8.CTRIPL ADCSOCB CLB4_5.1 ADCDEVT4
16 SD1FLT1.COMP

H
SD1FLT1.COMP
H_OR_ COMPL

Reserved ERRORSTS.ERR
OR

17 SD1FLT1.COMPL INPUTXBAR7 CLB5_4.1 CPU1.CLA1HALT
18 SD1FLT2.COMP

H
SD1FLT2.COMP
H_OR_ COMPL

ECATSYNC0

19 SD1FLT2.COMPL INPUTXBAR8 CLB5_5.1 ECATSYNC1
20 SD1FLT3.COMP

H
SD1FLT3.COMP
H_OR_ COMPL

Reserved Reserved

21 SD1FLT3.COMPL INPUTXBAR9 CLB6_4.1 Reserved
22 SD1FLT4.COMP

H
SD1FLT4.COMP
H_OR_ COMPL

Reserved Reserved

1 Configuration Parameters

1-146

Select MUX

INPUT

0 1 2 3

TRIP# MUX

select
23 SD1FLT4.COMPL INPUTXBAR10 CLB6_5.1 Reserved
24 SD2FLT1.COMP

H
SD2FLT1.COMP
H_OR_ COMPL

Reserved Reserved

25 SD2FLT1.COMPL INPUTXBAR11 MCANA.FEVT0 CLB7_4.1
26 SD2FLT2.COMP

H
SD2FLT2.COMP
H_OR_ COMPL

Reserved Reserved

27 SD2FLT2.COMPL INPUTXBAR12 MCANA.FEVT1 CLB7_5.1
28 SD2FLT3.COMP

H
SD2FLT3.COMP
H_OR_ COMPL

Reserved Reserved

29 SD2FLT3.COMPL INPUTXBAR13 MCANA.FEVT2 CLB8_4.1
30 SD2FLT4.COMP

H
SD2FLT4.COMP
H_OR_ COMPL

Reserved Reserved

31 SD2FLT4.COMPL INPUTXBAR14 Reserved CLB8_5.1

 C28x-ePWM

1-147

ePWM X-BAR Mux Configuration Table - F28004x

Select MUX

INPUT

0 1 2 3

TRIP# MUX

select
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIPL ADCAEVT1 ECAP1OUT
1 CMPSS1.CTRIPL INPUTXBAR1 CLB1_OUT4 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIPL ADCAEVT2 ECAP2OUT
3 CMPSS2.CTRIPL INPUTXBAR2 CLB1_OUT5 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRIPL ADCAEVT3 ECAP3OUT
5 CMPSS3.CTRIPL INPUTXBAR3 CLB2_OUT4 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRIPL ADCAEVT4 ECAP4OUT
7 CMPSS4.CTRIPL INPUTXBAR4 CLB2_OUT5 ADCCEVT4
8 CMPSS5.CTRIPH CMPSS5.CTRIPH_OR_CTRIPL ADCBEVT1 ECAP5OUT
9 CMPSS5.CTRIPL INPUTXBAR5 CLB3_OUT4 Reserved
10 CMPSS6.CTRIPH CMPSS6.CTRIPH_OR_CTRIPL ADCBEVT2 ECAP6OUT
11 CMPSS6.CTRIPL INPUTXBAR6 CLB3_OUT5 Reserved
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRIPL ADCBEVT3 ECAP7OUT
13 CMPSS7.CTRIPL ADCSOCAO CLB4_OUT4 Reserved
14 Reserved Reserved ADCBEVT4 EXTSYNCOUT
15 Reserved ADCSOCBO CLB4_OUT5 Reserved
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL Reserved Reserved
17 SD1FLT1.COMPL INPUT7 Reserved CLAHALT
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL Reserved Reserved
19 SD1FLT2.COMPL INPUT8 Reserved Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL Reserved Reserved
21 SD1FLT3.COMPL INPUT9 Reserved Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL Reserved Reserved
23 SD1FLT4.COMPL INPUT10 Reserved Reserved
24 Reserved Reserved Reserved Reserved
25 Reserved INPUT11 Reserved Reserved
26 Reserved Reserved Reserved Reserved
27 Reserved INPUT12 Reserved Reserved
28 Reserved Reserved Reserved Reserved
29 Reserved INPUT13 Reserved Reserved
30 Reserved Reserved Reserved Reserved

1 Configuration Parameters

1-148

Select MUX

INPUT

0 1 2 3

TRIP# MUX

select
31 Reserved INPUT14 Reserved Reserved

 C28x-ePWM

1-149

ePWM X-BAR MUX Configuration Table - F2807x and F2837x

Select
MUX
INPUT

0 1 2 3

TRIP#
MUX

select
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIPL ADCAEVT1 ECAP1OUT
1 CMPSS1.CTRIPL INPUTXBAR1 CLB1_OUT4 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIPL ADCAEVT2 ECAP2OUT
3 CMPSS2.CTRIPL INPUTXBAR2 CLB1_OUT5 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRIPL ADCAEVT3 ECAP3OUT
5 CMPSS3.CTRIPL INPUTXBAR3 CLB2_OUT4 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRIPL ADCAEVT4 ECAP4OUT
7 CMPSS4.CTRIPL INPUTXBAR4 CLB2_OUT5 ADCCEVT4
8 CMPSS5.CTRIPH CMPSS5.CTRIPH_OR_CTRIPL ADCBEVT1 ECAP5OUT
9 CMPSS5.CTRIPL INPUTXBAR5 CLB3_OUT4 ADCDEVT1
10 CMPSS6.CTRIPH CMPSS6.CTRIPH_OR_CTRIPL ADCBEVT2 ECAP6OUT
11 CMPSS6.CTRIPL INPUTXBAR6 CLB3_OUT5 ADCDEVT2
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRIPL ADCBEVT3
13 CMPSS7.CTRIPL ADCSOCAO CLB4_OUT4 ADCDEVT3
14 CMPSS8.CTRIPH CMPSS8.CTRIPH_OR_CTRIPL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPL ADCSOCBO CLB4_OUT5 ADCDEVT4
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL Reserved Reserved
17 SD1FLT1.COMPL Reserved Reserved Reserved
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL Reserved Reserved
19 SD1FLT2.COMPL Reserved Reserved Reserved
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL Reserved Reserved
21 SD1FLT3.COMPL Reserved Reserved Reserved
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL Reserved Reserved
23 SD1FLT4.COMPL Reserved Reserved Reserved
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL Reserved Reserved
25 SD2FLT1.COMPL Reserved Reserved Reserved
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL Reserved Reserved
27 SD2FLT2.COMPL Reserved Reserved Reserved
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL Reserved Reserved

1 Configuration Parameters

1-150

Select
MUX
INPUT

0 1 2 3

TRIP#
MUX

select
29 SD2FLT3.COMPL Reserved Reserved Reserved
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL Reserved Reserved
31 SD2FLT4.COMPL Reserved Reserved Reserved

Note Ensure the selected MUX input peripheral is enabled.

TRIP# MUX (MUX 0->31)
Indicates the input signal selected for each MUX. For example,
XXXX1XXXXXXXXXXXXXXXXXXXXXXXXXX indicates that input signal 1 was selected for MUX 4.
X indicates that the MUX is disabled and no signal from the MUX will be sent to the ePWM X-BAR
output.

All the signals which are selected will be logically OR'd and sent to the TRIP# signal of ePWM.

This parameter appears only for specific processors.
RESET TRIP# MUX

Resets the signal selection for the MUX done so far.

Resets the TRIP# MUX (MUX 0->31) and Select MUX input inputs.
Invert TRIP# output

Enable to invert the TRIP output signal to the ePWM.
SYNCI Input X-BAR

Select the input X-BAR for SYNCI.

This parameter appears only for specific processors.
SYNCI pin assignment

Indicates the GPIO pin for the ePWM external input.

For F2807x, F2837x, F28004x and F2838x processors the SYNCI pin assignment is disabled as
this is configured directly through Input X-BAR.

EXTSYNCOUT source selection
Indicates the external SYNCOUT source selection for the ePWM SYNCOUT and eCAP SYNCOUT.

Note

• The default EXTSYNCOUT source selection value varies based on the processor selected.

 C28x-ePWM

1-151

• For processors F2838x/F28003x/F28002x, EXTSYNCOUT option can be used to send
synchronization output from eCAP in a model without ePWM blocks.

ePWMxSYNCIN source selection
Indicates the EPWMxSYNCIN Source Select Register (synchronization input pulse) for the ePWM
SYNCOUT and eCAP SYNCOUT. You can also set the SYNCIN to Disabled.

Note

• The default ePWMxSYNCIN source selection value varies based on the processor selected.
• For processors F28004x/F2837xD/F2837xS/F2807x, EXTSYNCIN1 and EXTSYNCIN2 are

mapped to Input X-BAR 5 and Input X-BAR 6 respectively.

SYNCO pin assignment
Assign the ePWM external sync pulse output (SYNCO) to a GPIO pin.

Note SYNCI and SYNCO pin assignments are available for TI F28044, TI F280x, TI Delfino
F2833x, TI Delfino F2834x, TI Piccolo F2802x, TI Piccolo F2803x, TI Piccolo F2806 processors.

PWM#x pin assignment
Assign the GPIO pin to the PWM#x module.

GPTRIP#SEL pin assignment(GPIO0~63)
Assign the ePWM trip-zone input to a GPIO pin.

Note The GPTRIP#SEL pin assignment is available only for TI Concerto F28M35x/F28M36x
processors.

PWM1SYNCI/ GPTRIP6SEL pin assignment
Assign the ePWM sync pulse input (SYNCI) to a GPIO pin.

Note The PWM1SYNCI/GPTRIP#SEL pin assignments are available only for TI Concerto
F28M35x/F28M36x processors.

DCxHTRIPSEL (Enter Hex value between 0 and 0x6FFF) / DCBHTRIPSEL (Enter Hex value
between 0 and 0x6FFF)

Assign the Digital Compare A high trip input to a GPIO pin.

Note DCxHTRIPSel pin assignment is available only for TI Concerto F28M35x/F28M36x
processors.

1 Configuration Parameters

1-152

DCxLTRIPSEL (Enter Hex value between 0 and 0x6FFF) / DCBLTRIPSEL (Enter Hex value
between 0 and 0x6FFF)

Assign the Digital Compare A low trip input to a GPIO pin.

Note The DCxLTRIPSEL pin assignment is available only for TI Concerto F28M35x/F28M36x
processors.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-ePWM

1-153

C28x-eQEP

Assign eQEP pins to GPIO pins.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-154

C28x-GPIO

Use the GPIO pins for digital input or output by connecting to one of the three peripheral I/O ports.

The GPIO pins available for various processors are:

Processors GPIO Pin Values
C281x GPIOA, GPIOB, GPIOD, GPIOE, GPIOF, and GPIOG.
F2803x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39, and

GPIO40_44.
F2805x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39, and

GPIO40_42.
F2806x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,

GPIO40_44, GPIO50_55, and GPIO56_58.
F2823x, F2833x, and C2834x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,

GPIO40_47, GPIO48_55, and GPIO56_63.
C2801x, F2802x, F28044,
F280x

GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, and GPIO32_34.

F28M35x (C28x) GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,
GPIO40_47, GPIO48_55, GPIO56_63, GPIO68_71, and GPIO128_135.

F28M36x (C28x) GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, and GPIO192_199.

F2807x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, and GPIO128_135.

F2837xD GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, GPIO136_143, GPIO144_151,
GPIO152_159, GPIO160_167, and GPIO168_175.

F2837xS GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, GPIO136_143, GPIO144_151,
GPIO152_159, GPIO160_167, and GPIO168_175.

F2838x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, GPIO136_143, GPIO144_151,
GPIO152_159, GPIO160_167, and GPIO168_175.

F28004x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,
GPIO40_47, GPIO48_55, and GPIO56_63.

Each pin selected for input offers four signal qualification types:

 C28x-GPIO

1-155

• Synchronize to SYSCLKOUT only—This setting is the default for all pins at reset. Using this
qualification type, the input signal is synchronized to the system clock, SYSCLKOUT. The following
figure shows the input signal measured on each tick of the system clock, and the resulting output
from the qualifier.

• Qualification using 3 samples—This setting requires three consecutive cycles of the same
value for the output value to change. The following figure shows that, in the third cycle, the GPIO
value changes to 0, but the qualifier output is still 1 because it waits for three consecutive cycles
of the same GPIO value. The next three cycles have a value of 0, and the output from the qualifier
changes to 0 immediately after the third consecutive value is received.

• Qualification using 6 samples—This setting requires six consecutive cycles of the same
GPIO input value for the output from the qualifier to change. In the following figure, glitch A does
not alter the output signal. When the glitch occurs, the counting begins, but as the next
measurement is low again, the count is ignored. The output signal does not change until six
consecutive samples of the high signal are measured.

Note These GPIO settings are supported for the F2837xD dual core processor only when you
select CPU1 in Build options >Select CPU.

1 Configuration Parameters

1-156

Qualification sampling period

Visible only when the Qualification using # samples option is selected. The qualification
sampling period, with possible values of 0–255, inclusive, calculates the frequency of the
qualification samples or the number of system clock ticks per sample. The formula for calculating
the qualification sampling frequency is SYSCLKOUT/(2 * Qualification sampling period), except for
zero. When Qualification sampling period=0, a sample is taken every SYSCLKOUT clock tick.
For example, a setting of 0 means that a sample is taken on each SYSCLKOUT tick.

The following figure shows the SYSCLKOUT ticks, a sample taken every clock tick, and the
Qualification type set to Qualification using 3 samples. In this case, the Qualification
sampling period=0:

In the next figure Qualification sampling period=1. A sample is taken every two clock ticks, and
the Qualification type is set to Qualification using 3 samples. The output signal changes
much later than if Qualification sampling period=0.

In the following figure, Qualification sampling period=2. A sample is taken every four clock
ticks, and the Qualification type is set to Qualification using 3 samples.

• Asynchronous—Using this qualification type, the signal is synchronized to an asynchronous
event initiated by the software (CPU) via control register bits.

 C28x-GPIO

1-157

GPIOA, GPIOB, GPIOD, GPIOE input qualification sampling period

GPIO# Pull Up Disabled

Select this check box to disable the GPIO pull-up register. This option is available only for TI Concerto
F28M35x/F28M36x processors.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-158

C28x-I2C

You can set the following parameters for I2C:

Mode
Configure the I2C module as Master or Slave.

If a module is an I2C master, it:

• Initiates communication with slave nodes by sending the slave address and requesting data
transfer to or from the slave.

• Outputs the Master clock frequency on the serial clock line (SCL) line.

If a module is an I2C slave, it:

• Synchronizes itself with the serial clock line (SCL) line.
• Responds to communication requests from the master.

In Slave mode, you can configure the Addressing format, Address register, and Bit count
parameters.

The Mode parameter corresponds to bit 10 (MST) of the I2C mode register (I2CMDR).
Addressing format

In Slave mode, determines the addressing format of the I2C master and sets the I2C module to
the same mode:

• 7-Bit Addressing—the normal address mode.
• 10-Bit Addressing—the expanded address mode.
• Free Data Format—a mode that does not use addresses. (If you Enable loopback, the

Free data format is not supported.)

The Addressing format parameter corresponds to bit 3 (FDF) and bit 8 (XA) of the I2C mode
register (I2CMDR).

Own address register
In Slave mode, enter the 7-bit (0–127) or 10-bit (0–1023) address that the I2C module uses while
it is a slave.

This parameter corresponds to bits 9–0 (OAR) of the I2C own address register (I2COAR).
Bit count

In Slave mode, sets the number of bits in each data byte the I2C module transmits and receives.
This value must match that of the I2C master.

This parameter corresponds to bits 2–0 (BC) of the I2C mode register (I2CMDR).
Module clock prescaler (IPSC: 0 to 255)

In Master mode, configures the module clock frequency by entering a value 0–255, inclusive.

Module clock frequency = I2C input clock frequency / (Module clock prescaler + 1)

The I2C specifications require a module clock frequency between 7 MHz and 12 MHz.

 C28x-I2C

1-159

The I2C input clock frequency depends on the DSP input clock frequency and the value of the PLL
control register divider (PLLCR). For more information on setting the PLLCR, see the
documentation for your digital signal controller.

The Module clock prescaler (IPSC: 0 to 255) corresponds to bits 7–0 (IPSC) of the I2C
prescaler register (I2CPSC).

I2C Module clock frequency (SYSCLKOUT / (IPSC+1)) in Hz
Display the frequency the I2C module uses internally. To set this value, change the Module clock
prescaler.

For more information about this value, see the “Formula for the Master Clock Period” section in
the TMS320x280x Inter-Integrated Circuit Module Reference Guide, Literature Number:
SPRU721, on the Texas Instruments website.

I2C Master clock frequency (Module Clock Freq/(ICCL+ICCH+10)) in Hz
Display the master clock frequency.

For more information about this value, see the “Clock Generation” section in the TMS320x280x/
TMS320F28M35x/ TMS320F28M36x Inter-Integrated Circuit Module Reference Guide, Literature
Number: SPRU721/ SPRUH22F/ SPRUHE8B, available on the Texas Instruments website.

Master clock Low-time divider (ICCL: 1 to 65535)
In Master mode, the divider determines the duration of the low state of the serial clock line
(SCL) on the I2C bus.

The low-time duration of the master clock = Tmod x (ICCL + d).

For more information, see the “Formula for the Master Clock Period” section in the
TMS320x280x/ TMS320F28M35x/ TMS320F28M36x Inter-Integrated Circuit Module Reference
Guide, Literature Number: SPRU721A/ SPRUH22F/ SPRUHE8B, available on the Texas
Instruments website.

This parameter corresponds to bits 15–0 (ICCL) of the clock low-time divider register (I2CCLKL).
Master clock High-time divider (ICCH: 1 to 65535)

In Master mode, the divider determines the duration of the high state of the serial clock line
(SCL) on the I2C bus.

The high-time duration of the master clock = Tmod x (ICCL + d).

For more information about this value, see the “Formula for the Master Clock Period” section in
the TMS320x280x/ TMS320F28M35x/ TMS320F28M36x Inter-Integrated Circuit Module
Reference Guide, Literature Number: SPRU721A, SPRUH22f, SPRUHE8B, available on the Texas
Instruments website.

This parameter corresponds to bits 15–0 (ICCH) of the clock high-time divider register
(I2CCLKH).

Enable loopback
In Master mode, enables or disables digital loopback mode. In digital loopback mode, I2CDXR
transmits data over an internal path to I2CDRR, which receives the data after a configurable
delay.

The delay, measured in DSP cycles, equals (I2C input clock frequency/module clock frequency) x
8.

1 Configuration Parameters

1-160

While Enable loopback is enabled, free data format addressing is not supported.

This parameter corresponds to bit 6 (DLB) of the I2C mode register (I2CMDR).
SDA pin assignment

Select a GPIO pin as I2C data bidirectional port.

This parameter is not available for TI C2000 F280x, F28044, F2833x, and C2834x processors.
SCL pin assignment

Select a GPIO pin as I2C clock bidirectional port.

This parameter is not available for TI C2000 F280x, F28044, F2833x, and C2834x processors.
Enable Tx interrupt

This parameter corresponds to bit 5 (TXFFIENA) of the I2C transmit FIFO register (I2CFFTX).
Tx FIFO interrupt level

This parameter corresponds to bits 4–0 (TXFFIL4-0) of the I2C transmit FIFO register (I2CFFTX).
Enable Rx interrupt

This parameter corresponds to bit 5 (RXFFIENA) of the I2C receive FIFO register (I2CFFRX).
Rx FIFO interrupt level

This parameter corresponds to bit 4–0 (RXFFIL4-0) of the I2C receive FIFO register (I2CFFRX).
Enable system interrupt

Select this parameter to configure the five basic I2C interrupt request parameters in the interrupt
enable register (I2CIER):

• Enable AAS interrupt
• Enable SCD interrupt
• Enable ARDY interrupt
• Enable NACK interrupt
• Enable AL interrupt

Enable AAS interrupt
Enable the addressed-as-slave interrupt.

When enabled, the I2C module generates an interrupt (AAS bit = 1) upon receiving one of the
following:

• Its Own address register value
• A general call (all zeros)
• A data byte in free data format

When enabled, the I2C module clears the interrupt (AAS = 0) upon receiving one of the following:

• Multiple START conditions (7-bit addressing mode only)
• A slave address that is different from Own address register (10-bit addressing mode only)
• A NACK or a STOP condition

This parameter corresponds to bit 6 (AAS) of the interrupt enable register (I2CIER).

 C28x-I2C

1-161

Enable SCD interrupt
Enable STOP condition detected interrupt.

When enabled, the I2C module generates an interrupt (SCD bit = 1) after the CPU detects a stop
condition on the I2C bus.

When enabled, the I2C module clears the interrupt (SCD = 0) upon one of the following events:

• The CPU reads I2CISRC while it indicates a stop condition
• A reset of the I2C module
• Someone manually clears the interrupt

This parameter corresponds to bit 5 (SCD) of the interrupt enable register (I2CIER).
Enable ARDY interrupt

Enable register-access-ready interrupt enable bit.

When enabled, the I2C module generates an interrupt (ARDY bit = 1) after the previous address,
data, and command values in the I2C module registers have been used. New values can be
written to the I2C module registers.

This parameter corresponds to bit 2 (ARDY) of the interrupt enable register (I2CIER).
Enable NACK interrupt

Enable no acknowledgment interrupt enable bit.

When enabled, the I2C module generates an interrupt (NACK bit = 1) when the module operates
as a transmitter in master or slave mode and receives a NACK condition.

This parameter corresponds to bit 1 (NACK) of the interrupt enable register (I2CIER).
Enable AL interrupt

Enable arbitration-lost interrupt.

When enabled, the I2C module generates an interrupt (AL bit = 1) when the I2C module operates
as a master transmitter and looses an arbitration contest with another master transmitter.

This parameter corresponds to bit 0 (AL) of the interrupt enable register (I2CIER).

For more information about the I2C parameters, see the TMS320x280x/ TMS320F28M35x/
TMS320F28M36x Inter-Integrated Circuit Module Reference Guide, Literature Number: SPRU721A/
SPRUH22F/ SPRUHE8B available on the Texas Instruments website.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-162

C28x-LIN

You can configure the LIN Transmit and LIN Receive blocks within a model.

For detailed information on LIN module, see TMS320F2803x Piccolo Local Interconnect Network
(LIN) Module, Literature Number SPRUGE2, available at the Texas Instruments website.

LIN Module clock frequency (LM_CLK = SYSCLKOUT/2) in MHz
Display the frequency of the LIN module clock in MHz.

Enable loopback
Enables LIN loopback testing. When this option is enabled, the LIN module does the following:

• Internally redirects the LINTX output to the LINRX input.
• Places the external LINTX pin in a high state.
• Places the external LINRX pin in a high impedance state.

The default is disabled.
Suspension mode

Use this option to configure how the LIN state machine behaves while you debug the program on
an emulator. The available options are:

• Hard_abort—Halts the transmissions and counters when you enter the LIN debug mode. The
transmissions and counters resume when you exit LIN debug mode.

• Free_run—Allows completion of the current transmit and receive functions when you enter
the LIN debug mode.

Parity mode
Use this option to configure parity checking. The available options are:

• None—Disables parity.
• Odd—Sets the parity bit to one if you have an odd number of ones in your bytes, such as

00110010.
• Even—Sets the parity bit to one if you have an even number of ones in your bytes, such as

00110011.

The default is None.

For ID parity error interrupt in the LIN Receive block to generate interrupts, enable Parity
mode.

Frame length bytes
Set the number of data bytes in the response field, from 1–8 bytes.

The default is 8 bytes.
Baud rate prescaler (P: 0-16777215)

To set the LIN baud rate manually, enter a prescaler value, from 0–16777215. Click Apply to
update the Baud rate display.

The default is 15.

 C28x-LIN

1-163

For more information, see the “Baud Rate” topic in the Texas Instruments document,
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module, Literature Number SPRUGE2.

Baud rate fractional divider (M: 0–15)
To set the LIN baud rate manually, enter a fractional divider value, from 0–15. Click Apply to
update the Baud rate display.

The default is 4.

For more information, see the “Baud Rate” topic in the Texas Instruments document,
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module, Literature Number SPRUGE2.

Baud rate (FLINCLK = LM_CLK/(16*(P+1+M/16)) in bits/sec
Display the baud rate. For more information, see “Setting the LIN baud rate”.

Communication mode
Enable or disable the LIN module from using the ID-field bits ID4 and ID5 for length control.

The default is ID4 and ID5 not used for length control.
Data byte order

Set the “endianness” of the LIN message data bytes.

The default is Little_Endian.
Data swap width

Set the width for data swap. If you set Data byte order to Big_Endian, the only available option
for Data swap width is 8_bits.

Pin assignment (Tx)
Map the LINTX output to a specific GPIO pin.

The default is GPIO9.
Pin assignment (Rx)

Map the LINRX input to a specific GPIO pin.

The default is GPIO11.
LIN mode

Set the LIN module as a master or a slave. The default is Slave.

In master mode, the LIN node can transmit queries and commands to slaves. In slave mode, the
LIN module responds to queries or commands from a master.

This option corresponds to the CLK_MASTER field in the SCI Global Control Register (SCIGCR1).
ID filtering

Select the type of mask filtering comparison the LIN module performs.

If you select ID byte, the module uses the RECID and ID-BYTE fields in the LINID register to
detect a match. If you select this option and enter 0xFF for LINMASK, the LIN module does not
report matches.

If you select ID slave task, the module uses the RECID an ID-SlaveTask byte to detect a
match. If you select this option and enter 0xFF for LINMASK, the LIN module reports matches.

1 Configuration Parameters

1-164

The default is ID slave task byte.
ID byte

If you set ID filtering as ID byte, use this option to set the ID BYTE, also known as the “LIN
mode message ID”.

In master mode, the CPU writes this value to initiate a header transmission. In slave mode, the
LIN module uses this value to perform message filtering.

The default is 0x3A.
ID slave task byte

If you set ID filtering to ID slave task byte, use this option to set the ID-SlaveTask BYTE.
The LIN node compares this byte with the received ID and determines whether to transmit or
receive.

The default is 0x30.
Checksum type

If you select Classic, the LIN node generates the checksum field from the data fields in the
response.

If you select Enhance, the LIN node generates the checksum field from both the ID field in the
header and data fields in the response. LIN 1.3 supports classic checksums only. LIN 2.0 supports
both classic and enhanced checksums.

The default is Classic.
Enable multibuffer mode

When you select this check box, the LIN node uses transmit and receive buffers instead of just
one register. This setting affects various other LIN registers, such as: checksums, framing errors,
transmitter empty flags, receiver ready flags, and transmitter ready flags.

The default is selected.
Enable baud rate adapt mode

This option is displayed when you set LIN mode to Slave.

If you enable this option, the slave node automatically adjusts its baud rate to match that of the
master node. For this feature to work, first set the Baud rate prescaler and Baud rate
fractional divider.

If you disable this option, the LIN module sets a static baud rate based on the Baud rate
prescaler and Baud rate fractional divider.

The default is not selected.
Inconsistent synch field error interrupt

This option is displayed when you set LIN mode to Slave.

If you enable this option, the slave node generates interrupts when it detects irregularities in the
synch field. This option is only relevant if you enable Enable adapt mode.

The default is Disabled.
No response error interrupt

This option is displayed when you set LIN mode to Slave.

 C28x-LIN

1-165

If you enable this option, the LIN module generates an interrupt if it does not receive a complete
response from the master node within a timeout period.

The default is Disabled.
Timeout after 3 wakeup signals interrupt

This option is displayed when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt when it sends three wakeup signals to the
master node and does not receive a header in response. The slave waits 1.5 seconds before
sending another series of wakeup signals.

This interrupt indicates that the master node is having a problem recovering from low-power or
sleep mode.

The default is Disabled.
Timeout after wakeup signal interrupt

This option is displayed when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt when it sends a wakeup signal to the master
node and does not receive a header in response. The slave waits 150 milliseconds before sending
another series of wakeup signals.

This interrupt indicates that the master node is delayed recovering from low-power or sleep
mode.

The default is Disabled.
Timeout interrupt

This option is displayed when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt after 4 seconds of inactivity on the LIN bus.

The default is Disabled.
Wakeup interrupt

This option is displayed when you set LIN mode to Slave.

When you enable this option:

• In low-power mode, a LIN slave node generates a wakeup interrupt when it detects the falling
edge of a wake-up pulse or a low level on the LINRX pin.

• A LIN slave node that is “awake” generates a wakeup interrupt if it receives a request to enter
low-power mode while it receives data.

• A LIN slave node that is “awake” does not generate a wakeup interrupt if it receives a wakeup
pulse.

The default is Disabled.

1 Configuration Parameters

1-166

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-LIN

1-167

C28x-Scheduler Options

Use scheduler options to specify the base rate of your model. An interrupt can be used as a base rate
trigger source for the scheduler. The scheduler options available are:

• Timer 0—The default option to schedule all synchronous rates present in your model with CPU
Timer 0. When you select this option, the CPU Timer 0 is set according to the base rate of the
model.

• ADCINT1—The option to schedule all synchronous rates present in your model with ADC interrupt
1 (ADCINT1). When you select this option, make sure that ADCINT1 triggers periodically at base
rate used in the model.

• ADCINT2—The option to schedule all synchronous rates present in your model with ADC interrupt
2 (ADCINT2). When you select this option, make sure that ADCINT2 triggers periodically at base
rate used in the model.

• ADCx1_INT—The option to schedule all synchronous rates present in your model with ADC
interrupt (ADCx1_INT). When you select this option, make sure that ADCx1_INT triggers
periodically at base rate used in the model.

ADCx1_INT, where x can be A,B,C or D and varies depending on the processor selected.

Note The interrupt used to schedule the base rate trigger option in Hardware implementation
> Operating system/scheduler > Base rate trigger must not be used to configure the
Hardware Interrupt block. For example, if you configure Timer 0 as Base rate trigger, you
should not use CPU no =1 and PIE number =7 to trigger timer0 interrupt ISR from Hardware
interrupt block in the model.

Warning Replacing the default scheduler interrupt source Timer 0 with ADCINT1 or ADCINT2 is an
advanced setting. Ensure that you configure ADCINT1 or ADCINT2 to trigger periodically at the
specified base rate. If the ADCINT1 or ADCINT2 does not trigger periodically or triggers at a
different rate from the base rate, the model execution on the target is unpredictable.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-168

C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D

You can set the following parameters for serial communications interface (SCI):

Enable loopback
Enable the loopback function for self-test and diagnostics. When this function is enabled, a C28x
DSP Tx pin is internally connected to its Rx pin, and the DSP can transmit data from its output
port to its input port to check the integrity of the transmission.

Suspension mode
The type of suspension to be used while debugging your program with Code Composer Studio.
When your program encounters a breakpoint, the suspension mode determines whether to
perform the program instruction. The available options are:

• Hard_abort—Stops the program immediately.
• Soft_abort—Stops when the current receive/transmit sequence is complete.
• Free_run—Continues running regardless of the breakpoint.

Number of stop bits
Specify the number of stop bits transmitted.

Parity mode
The type of parity to be used. The available options are:

• None—Disables parity.
• Odd—Sets the parity bit to one if you have an odd number of ones in your bytes, such as

00110010.
• Even—Sets the parity bit to one if you have an even number of ones in your bytes, such as

00110011.

Character length bits
Length in bits of each transmitted or received character. The default value is 8.

Desired baud rate in bits/sec
Specify the desired baud rate.

Baud rate prescaler (BRR = (SCIHBAUD << 8) | SCILBAUD)
The value using which SCI baud rate is scaled. This value is based on LSPCLK.

Closest achievable baud rate (LSPCLK/(BRR+1)/8) in bits/sec
The closest achievable baud rate calculated based on LSPCLK and BRR.

Communication mode
Raw data is unformatted and sent whenever the transmitting side is ready to send, regardless of
whether the receiving side is ready or not. Without a wait state, deadlock conditions do not occur
and data transmission is asynchronous. With this mode, the receiving side could miss data, but if
the data is noncritical, using raw data mode can avoid blocking processes.

When you select protocol mode, handshaking between the host and the processor occurs. The
transmitting side sends $SND to indicate it is ready to transmit. The receiving side sends back
$RDY to indicate it is ready to receive. The transmitting side then sends data and, when the
transmission is completed, it sends a checksum.

 C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D

1-169

Advantages of using protocol mode are:

• Avoids deadlock
• Determines whether data is received without errors (checksum)
• Determines whether data is received by the processor
• Determines time consistency; each side waits for its turn to send or receive

Note

• Deadlocks can occur if an SCI Transmit block tries to communicate with multiple SCI Receive
blocks on different COM ports while both transmit and receive blocks are in blocking mode.
Deadlocks cannot occur on the same COM port.

• Support for Communication mode as Protocol will be removed in a future release of MATLAB.
• Protocol mode is supported only for Data length option as Length via dialog.

Post transmit FIFO interrupt when data is transmitted
If this option is selected, an interrupt is posted when the available data in transmit FIFO is less
than or equal to Transmit FIFO interrupt level, allowing the subsystem to perform any action.
For example, you can use the C28x Hardware Interrupt block for triggering the SCI Transmit
block to write data as soon as the FIFO is available for transmitting data.

If the option is not selected, the SCI Transmit block is in polling mode and checks if the FIFO is
available. If the FIFO is not full, the block writes data into the FIFO. If the FIFO is full, in blocking
mode, the block waits until the FIFO is available. In non-blocking mode, the block continues with
the execution of the algorithm without waiting for the availability of the FIFO.

Transmit FIFO interrupt level
The Transmit FIFO generates an interrupt when the number of data bytes in the transmit FIFO is
less than or equal to the value selected for this parameter. The transmits FIFO interrupt level
ranges between 1 to 16.

To configure this parameter, select the Post transmit FIFO interrupt when data is
transmitted parameter.

Post receive FIFO interrupt when data is transmitted
If this option is selected, an interrupt is posted when the data available in receive FIFO is greater
than or equal to Receive FIFO interrupt level, allowing the subsystem to perform any action.
For example, you can use the C28x Hardware Interrupt block for triggering the SCI Receive block
to read the data as soon as it is received.

Enable receive FIFO interrupt option also enables RXERRINTENA (SCI receive error interrupt
enable) interrupt. Enabling RXERRINTENA interrupt will trigger receive interrupt if RX ERROR bit
is set due to errors in receiving the data.

If the option is not selected, the SCI Receive block is in polling mode and checks the FIFO for
data. If data is present, the block reads and outputs the data. If data is not present, in blocking
mode, the block waits until data is available. In non-blocking mode, the block continues with the
execution of the algorithm without waiting for data.

1 Configuration Parameters

1-170

Receive FIFO interrupt level
The receive FIFO generates an interrupt when the number of data bytes in the receive FIFO is
greater than or equal to the value selected for this parameter. The receive FIFO interrupt level
ranges between 1 to 16.

To configure this parameter, select the Post receive FIFO interrupt when data is transmitted
parameter.

Data byte order
Select an option to match the endianness of the data being moved.

Pin assignment (Tx)
Assign the SCI transmit pin to be used with the SCI module.

Pin assignment (Rx)
Assign the SCI receive pin to be used with the SCI module.

Note All SCI modules are not available for all TI C2000 processors.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D

1-171

C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI_D

You can set the following parameters for the serial peripheral interface (SPI):

Mode
Configure the SPI module as Controller or Peripheral.

Desired baud rate in bits/sec
Specify the desired baud.

Baud rate factor (SPIBRR: between 3 and 127)
The value used to calculate the baud. To set the Baud rate factor, search for “Baud Rate
Determination” and “SPI Baud Rate Register (SPIBRR) Bit Descriptions” in TMS320x28xx, 28xxx
DSP Serial Peripheral Interface (SPI) Reference Guide, Literature Number: SPRU059, available
on the Texas Instruments website.

Closest achievable baud rate (LSPCLK/(SPIBRR+1)) in bits/sec
The closest achievable baud rate calculated based on LSPCLK and SPIBRR.

Suspension mode
The type of suspension to be used while debugging your program with Code Composer Studio.
When your program encounters a breakpoint, the selected suspension mode determines whether
to perform the program instruction. The available options are:

• Hard_abort—Stops the program immediately.
• Soft_abort—Stops when the current receive/transmit sequence is complete.
• Free_run—Continues running regardless of the breakpoint.

Enable loopback
Enable the loopback function for self-test and diagnostics. When this function is enabled, the Tx
pin on a C28x DSP is internally connected to its Rx pin, and the DSP can transmit data from its
output port to its input port to check the integrity of the transmission.

Enable 3-wire mode
Enable SPI communication over three pins instead of the normal four pins.

Enable Tx interrupt
Enable SPI transmit interrupt operation.

Enable high speed mode
Enable high speed SPI mode for supported pins.

This option is available for specific processors.
FIFO interrupt level (Tx)

Set level for transmit FIFO interrupt.
Enable Rx interrupt

Enable SPI receive interrupt operation.
FIFO interrupt level (Rx)

Set level for receive FIFO interrupt.

1 Configuration Parameters

1-172

FIFO transmit delay
FIFO transmit delay (in processor clock cycles) to pause between data transmissions. Enter an
integer.

Peripheral in controller out pin assignment
Assign the peripheral in controller out pin SPI value to a GPIO pin.

Peripheral out controller in pin assignment
Assign the peripheral out controller in pin SPI value to a GPIO pin.

CLK pin assignment
Assign the CLK pin to a GPIO pin.

Chip select (provided by SPI module) assignment
Assign the chip select (provided by SPI module) to a GPIO pin.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI_D

1-173

C28x-Watchdog

When enabled, if the software fails to reset the watchdog counter within a specified interval, the
watchdog resets the processor or generates an interrupt. This feature enables the processor to
recover from faults.

For more information, see the Data Manual or System Control and Interrupts Reference Guide for
your processor on the Texas Instruments website.

Enable watchdog
Enable the watchdog timer module.

This parameter corresponds to bit 6 (WDDIS) of the watchdog control register (WDCR) and bit 0
(WDOVERRIDE) of the system control and status register (SCSR).

Counter clock
Set the watchdog timer period relative to OSCCLK/512.

This parameter corresponds to bits 2–0 (WDPS) of the watchdog control register (WDCR).

Note Depending on the processor type, the default value of the watchdog clock (WDCLK) can be
based on the internal oscillator (INTOSC1) or external oscillator (OSCCLK).

Timer period ((1/Counter clock)*256) in seconds
Display the timer period in seconds. This value automatically gets updated when you change the
Counter clock parameter.

Time out event
Configure the watchdog to reset the processor or generate an interrupt when the software fails to
reset the watchdog counter. The available options are:

• Chip reset—Generates a signal (WDRST) that resets the processor and disables the
watchdog interrupt signal (WDINT).

• Raise WD Interrupt—Generates a watchdog interrupt signal (WDINT) and disables the
reset processor signal (WDRST). The WDINT signal can be used to wake the device from an
idle or standby low-power mode.

This parameter corresponds to bit 1 (WDENINT) of the system control and status register
(SCSR).

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-174

CMPSS

The Comparator Subsystem consists of two modules, Comparator High (COMPH) and Comparator
Low (COMPH). Each module generates a high digital output when the voltage on the first input pin
(positive input) is greater than the voltage on the second input pin (negative input). And each module
generates a low digital output when the voltage on the first input pin (positive input) is less than the
voltage on the second input pin (negative input).

The second input pin can either be the external pin or the DAC module.

Configure CMPSS#
Configure the comparator subsystem (CMPSS).

Select this parameter to configure the comparator subsystem (CMPSS). If Configure CMPSS#
check box is clear, then the CMPSS modules is configured with default values.

Note The number of modules available will vary for different processors.

Configure COMP#
Configure the COMPH or COMPL module.

Select this parameter to configure the COMPH or COMPL module. If configure COMP# check box
is clear, then the COMPH# module is configured with default values.

Reload condition for RAMP reference value (RAMPLOADSEL)
Reload condition for RAMP reference value.

Determines whether CMPSS Ramp Status Register (RAMPSTS) is updated from Immediate
(RAMPMAXREFA) or Shadow (RAMPMAXREFS) when CMPSS Comparator Status Register
(COMPSTS) is triggered.

This parameter is available if you are using RAMP module as DAC source for second input pin of
the comparator module.

Note This option is available only for COMPH module.

Invert comparator output
Invert comparator output.

Select this parameter to invert the output of COMP# module.
Enable latch clear by EPWMSYNCPER event

Enable latch clear by EPWMSYNCPER event.

Select this parameter to clear the comparator status latch output by EPWMSYNCPER event.
Configure digital filter

Configure the digital filter for COMP#.

 CMPSS

1-175

Select this parameter to configure digital filter options sample clock, sample window size and
threshold size. If the option is left unchecked, the comparator is configured with default values.

Sample clock prescale [0 to 1023]
Set the sample clock prescale for digital filter of COMP#.

It introduces the given number of system clock cycles between input samples.
Sample window size

Set the sample window size for digital filter of COMP#.

Number of samples monitored in digital filter window.
Threshold sample size

Set the threshold sample window size for digital filter of COMP#.

The THRESH samples of the opposite state must appear within the sample window for the output
to change state.

Comparator output type for EPWM X-BAR (CTRIP#SEL)
Select the comparator output type source for COMP#.

The comparator output type for EPWM X-BAR (CTRIP#SEL):

• Asynchronous output (ASYNCH)
• Synchronous output (SYNCH)
• Digital output filter (COMP#STS)
• Latched output (COMP#LATCH)
• Asynchronous (ASYNCH) or Latched (COMP#LATCH) output

Comparator output type for OUTPUT X-BAR (CTRIPOUT#SEL)
Select the comparator output type source for COMP#.

The comparator output type for OUTPUT X-BAR (CTRIPOUT#SEL):

• Asynchronous output (ASYNCH)
• Synchronous output (SYNCH)
• Digital output filter (COMP#STS)
• Latched output (COMP#LATCH)
• Asynchronous (ASYNCH) or Latched (COMP#LATCH) output

DAC reference voltage
Select the DAC reference voltage for CMPSS.

Determines the voltage supply selected as the reference for comparator DAC. The reference
voltage can either be Internal reference voltage (VDDA) or External reference voltage
through ADCINB0 (VDAC).

Reload condition for DAC value (SWLOADSEL)
Select the reload condition for DAC value.

Determines the DAC value selected for the software load select. The DAC value can either be
System clock (SYSCLK) or External event (EPWMSYNCPER).

1 Configuration Parameters

1-176

EPWM peripheral synchronization event
Select the EPWM peripheral synchronization event.

Select the PWMSYNC event to clear the latched output or reload the RAMP values.
EPWM blank window event

Select the EPWM for blanking window

Determines the leading edge blanking of the comparator module.

Note This parameter appears only for specific processors.

Comparator hysteresis value
Set the amount of hysteresis on the comparator inputs.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 CMPSS

1-177

Execution profiling
Number of profiling samples to collect

Enter the number of profiling samples to collect. Using execution profiling, you can record the
execution time, count the assembler instruction, and the high-level statement in the generated
code.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-178

External Interrupt

External interrupts can be generated using GPIO pins.

XINT# Input X-BAR
Select the input X-BAR for external interrupt. In this case, # represents the number of the
external interrupt. This parameter is available only for specific processors.

XINT# GPIO
Indicates the GPIO pins for triggering external interrupts. In this case, # represents the number
of the external interrupt.

Note

• For F2807x, F2837x, F28004x and F2838x processors the XINT# GPIO is disabled.
• This parameter is available only for specific processors.

XINT# Polarity
Select the polarity of the signal in GPIO pin. Rising edge, Falling edge or Falling and rising edge
are the polarity signals. In this case, # represents the number of the external interrupt.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 External Interrupt

1-179

External Mode

Allows you to do external mode settings for your model.

Communication interface
Select the type of communication interface to run your model in external mode.

Default: XCP on Serial

• XCP on Serial
• XCP on CAN

SCI module
Select the serial communication interface module.

By default SCI_A module is selected for Controlcard and Launchpads. For custom boards, select
other serial modules to connect to FTDI.

Serial port in MATLAB preferences
Lists the COM port entries available in the device manager and saved COM port in MATLAB
preferences of the target hardware. You can select the required COM port from the drop-down.

The COM port value will be saved as MATLAB preference for a given target instead of model. For
example, if you choose a same target for a new model, the serial port saved in MATLAB
preferences will be selected automatically.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

You can also set the serial port in MATLAB preferences for the given hardware board using the
MATLAB command:

codertarget.tic2000.setSerialPortPreferences(Hardware board, CPU value, Serial port)

Here CPU value is optional argument.

To know the COM port used by the target hardware on your computer, see “Serial Configuration
for External Mode and PIL” on page 1-67.

Host interface
Select the interface through which the host computer communicates to target hardware for signal
monitoring and parameter tuning. This parameter supports only Third party calibration
tools as host interface.

CAN module
Select the CAN module to be used with external mode.

CAN vendor
Enter the CAN vendor for the CAN module. Use the Vehicle Network Toolbox function
canChannelList() to get values for CAN vendor. In the MATLAB command window, type
canChannelList() and press enter.

1 Configuration Parameters

1-180

CAN device
Enter the CAN device for the CAN module. Use the Vehicle Network Toolbox function
canChannelList() to get values for CAN device. In the MATLAB command window, type
canChannelList() and press enter.

CAN channel number
Enter the CAN channel number for the CAN module. Use the Vehicle Network Toolbox function
canChannelList() to get values for CAN channel number. In the MATLAB command window,
type canChannelList() and press enter.

CAN ID Command
Enter the CAN ID Command for the CAN module.

CAN ID Response
Enter the CAN ID Response for the CAN module.

Rx mailbox number (0-31)
Enter the Rx mailbox number for the CAN module. This parameter supports integers from 0 to
31.

Tx mailbox number (0-31)
Enter the Tx mailbox number for the CAN module. This parameter supports integers from 0 to
31.

Extended CAN ID
Select this if you want to use extended ID.

Refresh
Lists the new COM port entries available in your device manager.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

Verbose
Select this to view the external mode execution progress and updates in the Diagnostic Viewer or
in the MATLAB command window.

Set logging buffer size automatically
Select this to automatically set the number of bytes to preallocate for the buffer in the hardware
during simulation. By default, the Set logging buffer size automatically parameter is selected.
If you clear this parameter, Logging buffer size (in bytes) parameter becomes available, where
you can manually specify the memory buffer size for XCP-based External mode simulation..

Maximum number of contiguous samples
Specify a value for maximum number of contiguous samples parameter. This parameter dictates
the maximum number of samples that can be filled in a single packet and the memory is allocated
accordingly.

Use a dedicated timer to improve time stamp accuracy
Select this parameter to log hardware time data inside ISR at ISR trigger rate and idle task at
trigger rate for XCP External mode for Serial and CAN.

• On - Enabling this options results in data logging inside ISR at ISR trigger rate. You can
analyze the log data in Dashboard blocks or Data Inspector but not in Scope or Display blocks.

• Off - Disabling this options results in data logging inside ISR at base rate and can analyze
data in Scope or Display blocks.

 External Mode

1-181

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2
• “Serial Configuration for External Mode and PIL” on page 1-67

1 Configuration Parameters

1-182

PIL

Allows you to do profiling settings for your model.

Communication interface
Select the type of communication interface to run your model in external mode.

Default: Serial
SCI module

Select the serial communication interface module.

By default SCI_A module is selected for Controlcards and Launchpads. For custom boards, select
other serial modules to connect to FTDI.

Serial port in MATLAB preferences
Lists the COM port entries available in the device manager and saved COM port in MATLAB
preferences of the target hardware. You can select the required COM port from the drop-down.

The COM port value will be saved as MATLAB preference for a given target instead of model. For
example, if you choose a same target for a new model, the serial port saved in MATLAB
preferences will be selected automatically.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

You can also set the serial port in MATLAB preferences for the given hardware board using the
MATLAB command:

codertarget.tic2000.setSerialPortPreferences(Hardware board, CPU value, Serial port)

Here CPU value is optional argument.

To know the COM port used by the target hardware on your computer, see “Serial Configuration
for External Mode and PIL” on page 1-67.

Refresh
Lists the new COM port entries available in your device manager.

Click refresh to see the latest value serial port value stored in MATLAB preference for the given
hardware board and updated list of serial ports available from device manager.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 PIL

1-183

SD Card Logging
Use the SD card logging to log signals to SD card mounted on C2000 hardware.

Enable MAT-file logging on SD card
Enables the MAT-file logging for SD card.

SPI module
Select the desired interface on which the SD card is connected to hardware board.

C2000 hardware boards allow SD card to be interfaced through SPI. The SPI module will run in
Controller mode. For the SPI module, Clock polarity will be automatically set to Falling_edge,
Clock phase value will be automatically set to No_delay and Data bits will be automatically set
to 8. It is advisable not to use the SPI module selected for SD card to perform any other
operations through SPI master write, SPI transmit and SPI receive blocks as these may create
issues in data logging on SD card.

Note For the selected SPI module, ensure that:

• Select the appropriate GPIO pins for Peripheral in controller out pin assignment,
Peripheral out controller in pin assignment, CLK pin assignment and Chip select
(provided by SPI module) pin assignment in the corresponding SPI_x pane.

• GPIO pins are not used with other peripherals or as input/output because these pins are not
included in the existing conflict check.

SPI baud rate
Select the desired option for the SPI interface used by the SD card.

The default is Maximum achievable supported by the inserted SD Card.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-184

SDFM

The sigma delta filter module (SDFM) is a four-channel digital filter designed specifically for current
measurement and resolver position decoding in motor control applications. Each input channel can
receive an independent delta-sigma (ΔΣ) modulator bitstream. The bitstreams are processed by four
individually-programmable digital decimation filters.

The filter set includes a fast comparator (secondary filter) for immediate digital threshold
comparisons for over-current and under-current monitoring and a primary data filter.

Configure filter #
Configure the filter channel for the SDFM module. Each SDFM module has four filter channels.

Data pin assignment (SD#_D#)
Select the data input (GPIO pin) for each filter channel.

Clock pin assignment (SD#_C#)
Select the clock input (GPIO pin) for each filter channel.

For F2838x processor, the GPIO value that you set in the Clock pin assignment (SD#_C#) option
of one filter channel can also be used in other filter channels.

Modulator clock mode
The input control unit is configured to receive the modulated data in following four modes:

• Same as the modulator data rate (MOD_0) - The modulator clock runs with the modulator
data rate. The modulator data is strobed at every rising edge of the modulator clock.

• Half the modulator data rate (MOD_1) - The modulator clock runs with half of the
modulator data rate. The modulator data is strobed at every edge of the modulator clock.

• Manchester encoded (MOD_2) - The modulator clock is off and the modulator data is
Manchester-encoded.

• Twice the modulator data rate (MOD_3) - The modulator clock runs with double the
modulator data rate. The modulator data is strobed at every other positive modulator clock
edge.

Comparator filter type
The comparator filter is configured to one of the four filter types: SincFast, Sinc1, Sinc2, and
Sinc3.

The comparator filter is a lowpass filter that converts the input bitstream into digital data by
digital filtering and decimation.

Comparator over sampling ratio (COSR) [0-31]
The comparator OSR settings can be configured to the value ranging 0 to 31 and are independent
of the data filter.

Effective number of bits (ENOB) of the comparator filter depends upon the comparator filter type,
COSR, and the sigma-delta modulator frequency.

Comparator higher threshold (HLT#) [0-32767]
Comparator higher threshold (HLT) is used to detect the over-value condition when comparator
data > = higher threshold register value (HLT) and generate an SDFM interrupt
when interrupts are enabled.

 SDFM

1-185

HLT lies in the range 0 and 32767.
Comparator lower threshold (LLT#) [0-32767]

Comparator lower threshold (LLT) is used to detect the under-value condition when comparator
data < = lower threshold register value (LLT) and generate an SDFM interrupt when
interrupts are enabled.

LLT lies in the range 0 and 32767.
Comparator higher threshold (HLTZ) [0-32767]

Comparator higher threshold (HLTZ) is used to detect threshold crossing event condition when
comparator data > = higher threshold register value (HLTZ) and does not generate
an SDFM interrupt when interrupts are enabled.

The Comparator higher threshold (HLTZ) has a range between 0 and 32767.

Note This parameter is available only for specific processors.

Data filter type
The data filter is configured to one of the four filter types: SincFast, Sinc1, Sinc2, and Sinc3.

The data filter is a lowpass filter that converts the input bitstream into digital data by digital
filtering and decimation.

Data over sampling ratio (DOSR)
The data OSR settings can be configured from 0 to 255 and is independent of the comparator
filter.

Effective number of bits (ENOB) of the data filter depend upon the data filter type, DOSR, and the
sigma-delta modulator frequency.

Data filter FIFO depth
Each data filter has a 16-level deep 32-bit FIFO.

FIFO enables the data filter unit to reduce interrupt overhead.

Note This parameter is available only for specific processors.

Enable data filter reset by ePWM
Enable to reset the data filter by external PWM compare output.

ePWM Module
Select the PWM module(PWM#SOCx) for synchronization.

This parameter is available only for specific processors.
Comparator event # (CEVT#) interrupt

Select the comparator event (CEVT#) interrupt.

This parameter is available only for specific processors.
Enable high level threshold crossing output (HLTZ)

Enable to detect an over-value condition.

1 Configuration Parameters

1-186

HLTZ is used in conjunction with eCAP to measure the frequency or duty cycle of the threshold
crossing events.

This parameter is available only for specific processors.
Enable modulator clock failure interrupt

Enable the interrupt for the modulator clock failure.
Enable data filter acknowledge interrupt

Enable the interrupt for new data acknowledgement.

When the primary filter is ready with new filter data, an acknowledgement (AFx) event is
generated. For a few processors, data filter acknowledgement is from the FIFO ready data event.

Enable comparator lower threshold (LLT)
Will enable the SDFM interrupt to detect the under - value condition.

Enable comparator higher threshold (HLT)
Will enable the SDFM interrupt to detect the over- value condition.

Synchronize SD Data with PLLCLK
The data input to a filter can be synchronized with the PLL clock.

This parameter is available only for specific processors.
Synchronize SD Clock with PLLCLK

The clock input to a filter can be synchronized with the PLL clock.

This parameter is available only for specific processors.

See Also

More About
• “Model Configuration Parameters for Texas Instruments C2000 Processors” on page 1-2

 SDFM

1-187

c2000setup
Launch C2000 Microcontroller Blockset hardware setup interface

Syntax
c2000setup

Description
c2000setup launches an interactive hardware setup interface to configure the connection to your
C2000 Microcontroller Blockset hardware.

The Hardware Setup window provides instructions for configuring the C2000 Microcontroller
Blockset to work with your hardware.

1 Configuration Parameters

1-188

Follow the instructions on each page of the Hardware Setup window. When the hardware setup
process completes, you can open the examples to get familiar with the product and its features.

Version History
Introduced in R2023a

See Also
“Hardware Setup for Third-Party Tools” | “Supported Third-Party Tools for Texas Instruments C2000
Processors”

 c2000setup

1-189

Blocks

2

C2000 Absolute IQN
Absolute value

Description
This block computes the absolute value of an IQ number input. The output is also an IQ number.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks® code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
c2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-2

C2000 Arctangent IQN
Four-quadrant arc tangent

Description
The Arctangent IQN block computes the four-quadrant arc tangent of the IQ number inputs and
produces IQ number output.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The Texas Instruments function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Parameters
Function

Type of arc tangent to calculate:

• atan2 — Compute the four-quadrant arc tangent with output in radians with values from -pi
to +pi.

• atan2PU — Compute the four-quadrant arc tangent per unit. If atan2(B,A) is greater than
or equal to 0, atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A) =
atan2(B,A)/2*pi+1. The output is in per-unit radians with values from 0 to 2*pi radians.

Note The order of the inputs to the Arctangent IQN block correspond to the Texas Instruments
convention, with argument 'A' at the top and 'B' at bottom.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to

 C2000 Arctangent IQN

2-3

Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

2 Blocks

2-4

C280x/C2833x ADC
Analog-to-digital converter (ADC)

Libraries:
C2000 Microcontroller Blockset C280x

Description
The ADC block configures the ADC to perform analog-to-digital conversion of signals connected to the
selected ADC input pins. The ADC block outputs digital values representing the analog input signal
and stores the converted values in the result register of your digital signal processor. You use this
block to capture and digitize analog signals from external sources such as signal generators,
frequency generators, or audio devices. With the C2833x, you can configure the ADC to use the
processor DMA module to move data directly to memory without using the CPU. This frees the CPU to
perform other tasks and increases overall system capacity.

Ports
Output

Data — ADC data
vector

The output of the C281x ADC is a vector of uint16 values. The output values are in the range 0 to
4095 because the C281x ADC is 12-bit converter.
Data Types: uint16

Parameters
ADC Control

Module — Select module to use
A (default) | B | A and B

Specify which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0 through ADCINA7).
• B — Displays the ADC channels in module B (ADCINB0 through ADCINB7).
• A and B — Displays the ADC channels in both modules A and B (ADCINA0 through ADCINA7 and

ADCINB0 through ADCINB7)

Conversion mode — Select conversion type
Sequential (default) | Simultaneous

Type of sampling to use for the signals:

 C280x/C2833x ADC

2-5

• Sequential — Samples the selected channels sequentially
• Simultaneous — Samples the corresponding channels of modules A and B at the same time

Start of conversion — Select start of conversion
Software (default) | ePWMxA | ePWMxB | XINT1_ADCSOC

Specify the type of signal that triggers the conversion:

Type of signal that triggers conversions to begin:

• Software — Signal from software. Conversion values are updated at each sample time.
• ePWM#A / ePWM#B / ePWM#A_ePWM#B — Start of conversion is controlled by user-defined PWM

events.
• XINT2_ADCSOC — Start of conversion is controlled by the XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the Module setting. The following table
summarizes the available choices. For each set of Start of conversion choices, the default is given
first.

Module Setting Start of Conversion Choices
A Software, ePWM#A, XINT2_ADCSOC
B ePWM#B, Software
A and B Software, ePWM#A, ePWM#B, ePWM#A_ePWM#B, XINT2_ADCSOC

Sample time — Interval at which block reads data
0.1 (default)

Time in seconds between consecutive sets of samples that are converted for the selected ADC
channel(s). This is the rate at which values are read from the result registers. To execute this block
asynchronously, set Sample Time to -1, check the Post interrupt at the end of conversion box.

To set different sample times for different groups of ADC channels, you must add separate C281x
ADC blocks to your model and set the desired sample times for each block.

Data type — Select the output data type
uint16 (default) | double | single | int8 | uint8 | int16 | int32 | uint32

Date type of the output data.

Post interrupt at end of conversion — Enable to post an asynchronous interrupt
Off (default) | on

Enable this check box to post an asynchronous interrupt at the end of each conversion. The interrupt
is posted at the end of conversion.

To execute this block asynchronously, set Sample Time to -1.

Use DMA (with C28x3x) — Enable to post an asynchronous interrupt
Off (default) | on

Enable this check box to post an asynchronous interrupt at the end of each conversion. The interrupt
is posted at the end of conversion.

2 Blocks

2-6

To execute this block asynchronously, set Sample Time to -1.

Input channels

Conversions no. # — Select ADC channel for each conversion number
ADCINA# and ADCINB# (default) | ADCINA# | …

Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be sampled multiple times during a single
conversion sequence. To oversample, specify the same channel for more than one conversion.
Converted samples are output as a single vector.

Use multiple output ports — Enable to output multiple ports
on (default) | off

If more than one ADC channel is used for conversion, you can use separate ports for each output and
show the output ports on the block. If you use more than one channel and do not use multiple output
ports, the data is output in a single vector.

More About
Modes

The ADC block supports ADC operation in dual and cascaded modes. In dual mode, either module A
or module B can be used for the ADC block, and two ADC blocks are allowed in the model. In
cascaded mode, both module A and module B are used for a single ADC block.

Version History
Introduced in R2016b

See Also
c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F28004x/F28002x/F28003x ePWM | “Configuring Acquisition Window Width for ADC Blocks”

 C280x/C2833x ADC

2-7

C28x Hardware Interrupt
Interrupt Service Routine to handle hardware interrupt on C28x processors

Description
Execution scheduling models based on timer interrupts do not meet the requirements of some real-
time applications to respond to external events. The C28x Hardware Interrupt block addresses this
problem by allowing asynchronous processing of interrupts triggered by events managed by other
blocks in the C28x DSP Chip Support Library.

When the C28x Hardware Interrupt block has an external interrupt selection, the selection enables
interrupts on the selected general-purpose I/O pins. To configure these pins, see the Configuration
Parameters > Hardware Implementation > Hardware board settings > Target hardware
resources > External Interrupt pane. For more information, see “Model Configuration Parameters
for Texas Instruments C2000 Processors” on page 1-2.

Vectorized Output

The output of this block is a function call. The size of the function call line equals the number of
interrupts the block is set to handle. Each interrupt is represented by four parameters shown on the
dialog box of the block. These parameters are a set of four vectors of equal length. Each interrupt is
represented by one element from each parameter (four elements total), one from the same position in
each of these vectors.

Each interrupt is described by:

• CPU interrupt numbers
• Peripheral Interrupts Expansion (PIE) interrupt numbers
• Task priorities
• Preemption flags

Each interrupt is described by a CPU interrupt number, a PIE interrupt number, a task priority, and a
preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single interrupt for a single
peripheral or peripheral module.

The following table lists the PIE and CPU interrupt numbers for the c28x processors F280x, F2802x,
F2803x, F2805x, F2806x, F2833x, F28M35x, and F28M36x that support 12×8 interrupts. The row
headers 1–12 represent the CPU values, and the column headers 1–8 represent the PIE values.

2 Blocks

2-8

PIE and CPU Interrupt Numbers for F280x, F2802x, F2803x, F2805x, F2806x, F2833x, F28M35x, and
F28M36x Processors

PIE
⇒

1 2 3 4 5 6 7 8

CPU
⇓

1
SEQ1INT
(ADC) /
ADCINT1

SEQ2INT
(ADC) /
ADCINT2

Reserved XINT1 XINT2 ADCINT /
ADCINT9

TINT0
(TIMER 0)

WAKEINT
(LPM/WD)

2 EPWM1_TZI
NT

EPWM2_TZI
NT

EPWM3_TZI
NT

EPWM4_TZI
NT

EPWM5_TZI
NT

EPWM6_
TZINT

EPWM7_TZI
NT

EPWM8_TZI
NT

3 EPWM1_IN
T

EPWM2_IN
T

EPWM3_IN
T

EPWM4_IN
T

EPWM5_IN
T

EPWM6_
INT

EPWM7_IN
T

EPWM8_IN
T

4 ECAP1_INT ECAP2_INT ECAP3_INT ECAP4_INT ECAP5_INT ECAP6_INT EPWM10_T
ZINT /
HRCAP1_IN
T

EPWM9_TZI
NT /
HRCAP2_IN
T

5 EQEP1_INT EQEP2_INT EQEP3_INT HRCAP3_IN
T

HRCAP4_IN
T

Reserved EPWM10_I
NT

EPWM9_IN
T

6 SPIRXINTA
(SPI-A)

SPITXINTA
(SPI-A)

SPIRXINTB
(SPIB_RX) /
MRINTB
(McBSP-B)

SPITXINTB
(SPIB_TX) /
MXINTB
(McBSP-B)

SPIRXINTC
(SPI-C) /
MRINTA
(McBSP-
A_RX)

SPITXINTC
(SPI-C) /
MXINTA
(McBSP-
A_TX)

SPIRXINTD
(SPI-D) /
EPWM12_T
ZINT

SPITXINTD
(SPI-D) /
EPWM11_T
ZINT

7 DINTCH1
(DMA1)

DINTCH2
(DMA2)

DINTCH3
(DMA3)

DINTCH4
(DMA4)

DINTCH5
(DMA5)

DINTCH6
(DMA6)

EPWM12_I
NT

EPWM11_I
NT

8 I2CINT1A I2CINT2A Reserved Reserved SCIRXINTC
(SCI-C)

SCITXINTC
(SCI-C)

Reserved Reserved

9 SCIRXINTA
(SCIA_RX)

SCITXINTA
(SCIA_TX)

SCIRXINTB
(SCIB_RX) /
LINA_INT0

SCITXINTB
(SCIB_TX) /
LINA_INT1

ECAN0INTA
(CANA_1)

ECAN1INTA
(CANA_2)

ECAN0INT
B (CANB_1)

ECAN1INT
B (CANB_2)

10 EPWM9_TZI
NT /
ADCINT1

EPWM10_T
ZINT /
ADCINT2

EPWM11_T
ZINT /
ADCINT3

EPWM12_T
ZINT /
ADCINT4

EPWM13_T
ZINT /
ADCINT5

EPWM14_T
ZINT /
ADCINT6

EPWM15_T
ZINT /
ADCINT7

EPWM16_T
ZINT /
ADCINT8

11 CLA1_INT1
/
EPWM9_IN
T7 /
MTOCIPCIN
T1

CLA1_INT2
/
EPWM10_I
NT /
MTOCIPCIN
T2

CLA1_INT3
/
EPWM11_I
NT /
MTOCIPCIN
T3

CLA1_INT4
/
EPWM12_I
NT /
MTOCIPCIN
T4 /

CLA1_INT5
/
EPWM13_I
NT

CLA1_INT6
/
EPWM14_I
NT

CLA1_INT7
/
EPWM15_I
NT

CLA1_INT8
/
EPWM16_I
NT

12 XINT3 XINT4 /
C28FLSING
ERR

XINT5 XINT6 /
C28RAMSI
NGERR

XINT7 /
C28RAMAC
CVIOL

Reserved LVF LUF

The PIE and CPU interrupt numbers for the c28x processors F2807x, F2837xS, F2837xD, F2838x,
F28004x, F28002x, and F28003x that support 12×16 interrupts are:

 C28x Hardware Interrupt

2-9

PIE and CPU Interrupt Numbers for F2807x, F2837xS, F2837xD, F2838x, F28004x, F28002x, and
F28003x Processors

PIE
⇒

1 2 3 4 5 6 7 8

CPU
⇓

1 ADCA1 ADCB1 ADCC1 XINT1 XINT2 ADCD1 TIMER 0 WAKE /
WDOG

2 EPWM1_TZ EPWM2_TZ EPWM3_TZ EPWM4_TZ EPWM5_TZ EPWM6_ TZ EPWM7_TZ EPWM8_TZ
3 EPWM1 EPWM2 EPWM3 EPWM4 EPWM5 EPWM6 EPWM7 EPWM8
4 ECAP1 ECAP2 ECAP3 ECAP4 ECAP5 ECAP6 ECAP7 Reserved
5 EQEP1 EQEP2 EQEP3 Reserved CLB1 CLB2 CLB3 CLB4
6 SPIA_RX SPIA_TX SPIB_RX SPIB_TX MCBSPA_R

X
MCBSPA_TX MCBSPB_R

X
MCBSPB_T
X

7 DMA_CH1 DMA_CH2 DMA_CH3 DMA_CH4 DMA_CH5 DMA_CH6 Reserved Reserved
8 I2CA I2CA_FIFO I2CB I2CB_FIFO SCIC_RX SCIC_TX SCID_RX SCID_TX
9 SCIA_RX SCIA_TX SCIB_RX SCIB_TX CANA_0 CANA_1 CANB_0 CANB_1
10 ADCA_EVT ADCA2 ADCA3 ADCA4 ADCB_EVT ADCB2 ADCB3 ADCB4
11 CLA1_1 CLA1_2 CLA1_3 CLA1_4 CLA1_5 CLA1_6 CLA1_7 CLA1_8
12 XINT3 XINT4 XINT5 MPOST FMC.DONE VCU FPU_OVER

FLOW
FPU_UNDE
RFLOW

PIE
⇒

9 10 11 12 13 14 15 16

CPU
⇓
1 I2CA SYS_ERR ECATSYNC

0 (CPU1
only)

ECATINTn
(CPU1 only)

IPC0/CIPC0 IPC1/CIPC1 IPC2/CIPC2 IPC3/CIPC3

2 EPWM9_TZ EPWM10_
TZ

EPWM11_T
Z

EPWM12_T
Z

EPWM13_T
Z

EPWM14_T
Z

EPWM15_T
Z

EPWM16_T
Z

3 EPWM9 EPWM10 EPWM11 EPWM12 EPWM13 EPWM14 EPWM15 EPWM16
4 FSITXA_INT

1
FSITXA_INT
2

FSITXB_INT
1

FSITXB_INT
2

FSIRXA_INT
1

FSIRXA_INT
2

FSIRXB_IN
T1

FSIRXB_IN
T2

5 SD1 /
SDFM1

SD2/SDFM1 ECATRSTIN
Tn (CPU1
only)

ECATSYNC
1 (CPU1
only)

SDFM1DR1 SDFM1DR2 SDFM1DR3 SDFM1DR4

6 SPIC_RX SPIC_TX SPID_RX SPID_TX SDFM2DR1 SDFM2DR2 SDFM2DR3 SDFM2DR4
7 FSIRXC_IN

T1
FSIRXC_IN
T2

FSIRXD_IN
T1

FSIRXD_IN
T2

FSIRXE_IN
T1

FSIRXE_IN
T2

FSIRXF_INT
1

FSIRXF_INT
2

2 Blocks

2-10

PIE
⇒

9 10 11 12 13 14 15 16

CPU
⇓
8 LINA_0/

FSIRXG_IN
T1

LINA_1/
FSIRXG_IN
T2

FSIRXH_IN
T1

FSIRXH_IN
T2

PMBUSA/
CLB5

CLB6 UPPA
(CPU1
only)/CLB7

CLB8

9 MCANSS_I
NT0(CPU1
only)

MCANSS_I
NT1 (CPU1
only)

MCANSS_E
CC_CORR_P
UL_INT
(CPU1 only)

MCANSS_W
AKE_AND_T
S_PLS_INT
(CPU1 only)

PMBUSA CM_STATU
S (CPU1
only)

USBA
(CPU1 only)

Reserved

10 ADCC_EVT ADCC2 ADCC3 ADCC4 ADCD_EVT ADCD2 ADCD3 ADCD4
11 CMTOCPUx

IPCINTR0
CMTOCPUx
IPCINTR1

CMTOCPUx
IPCINTR2

CMTOCPUx
IPCINTR3

CMTOCPUx
IPCINTR4

CMTOCPUx
IPCINTR5

CMTOCPUx
IPCINTR6

CMTOCPUx
IPCINTR7

12 EMIF_
ERROR

RAM_CORR
ECTABLE_E
RROR/
ECAP6INT2

FLASH_CO
RRECTABL
E_ERROR/
ECAP7INT2

RAM_ACCE
SS_VIOLATI
ON

SYS_PLL_
SLIP/
CPUxCRC_I
NT

AUX_PLL_S
LIP//
CLA1CRC_I
NT

CLA OVER
FLOW

CLA
UNDERFLO
W

The PIE and CPU interrupt numbers for the c281x processors are:

 C28x Hardware Interrupt

2-11

PIE and CPU Interrupt Numbers for C281x Processors

PIE
⇒

1 2 3 4 5 6 7 8

CP
U
⇓

1 PDPINTA
(EV-A)

PDPINTB
(EV-B)

Reserved XINT1 XINT2 ADCINT
(ADC)

TINT0
(TIMER 0)

WAKEINT
(LPM/WD)

2 CMP1INT
(EV-A)

CMP2INT
(EV-A)

CMP3INT
(EV-A)

T1PINT (EV-
A)

T1CINT
(EV-A)

T1UFINT
(EV-A)

T1OFINT
(EV-A)

Reserved

3 T2PINT (EV-
A)

T2CINT
(EV-A)

T2UFINT
(EV-A)

T2OFINT
(EV-A)

CAPINT1
(EV-A)

CAPINT2
(EV-A)

CAPINT3
(EV-A)

Reserved

4 CMP4INT
(EV-B)

CMP5INT
(EV-B)

CMP6INT
(EV-B)

T3PINT (EV-
B)

T3CINT
(EV-B)

T3UFINT
(EV-B)

T3OFINT
(EV-B)

Reserved

5 T4PINT (EV-
B)

T4CINT
(EV-B)

T4UFINT
(EV-B)

T4OFINT
(EV-B)

CAPINT4
(EV-B)

CAPINT5
(EV-B)

CAPINT6
(EV-B)

Reserved

6 SPIRXINTA
(SPI)

SPITXINTA
(SPI)

Reserved Reserved MRINT
(McBSP)

MXINT
(McBSP)

Reserved Reserved

7 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
8 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
9 SCIRXINTA

(SCI-A)
SCITXINTA
(SCI-A)

SCIRXINTB
(SCI-B)

SCITXINTB
(SCI-B)

ECAN0INT
(CAN)

ECAN1INT
(CAN)

Reserved Reserved

10 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
12 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

The task priority indicates the relative importance of the tasks associated with the asynchronous
interrupts. The lowest value in this field represents the highest priority. The default priority value of
the base rate task is 40, so the priority value for each asynchronously triggered task must be less
than 40 (to configure them as higher-priority) for these tasks to preempt the base rate task.

The preemption flag determines whether a given interrupt is preemptable or not. Preemption
overrides prioritization, if an interrupt triggers a higher-priority task while a lower-priority task is
running, the execution of the lower-priority task can be suspended and resumed after the completion
of the higher priority task, provided the lower-priority task is configured as preemptable.

Parameters
CPU interrupt numbers

Enter a vector of CPU interrupt numbers for the interrupts you want to process asynchronously.
PIE interrupt numbers

Enter a vector of PIE interrupt numbers for the interrupts you want to process asynchronously.
Simulink task priorities

Enter a vector of task priorities for the interrupts you want to process asynchronously.

2 Blocks

2-12

See the discussion of this block's “Vectorized Output” on page 2-8 for an explanation of task
priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to process asynchronously.

See the discussion of this block's “Vectorized Output” on page 2-8 for an explanation of
preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous interrupt processing in the
context of your Simulink software model.

Note Select this check box to enable you to test asynchronous interrupt processing behavior in
Simulink software.

See Also
“ADC-PWM Synchronization Using ADC Interrupt”

“Asynchronous Scheduling”

“Field-Oriented Control of PMSM with Quadrature Encoder Using C2000 Processors”

“Schedule a Multi-Rate Controller for a Permanent Magnet Synchronous Machine”

“Photovoltaic Inverter with MPPT Using Solar Explorer Kit”

 C28x Hardware Interrupt

2-13

C2802x/C2803x/C2806x/F28M3x COMP
Compare two input voltages on comparator pins

Description
Configure the comparator module to output the comparison result on the comparator pins of the
processor.

Parameters
Comparator module

Select the comparator module to configure. Use only one block per module.
Second input

Select COMPxB to compare the voltage of Input Pin A with Input Pin B

Select Internal DAC to compare the voltage of Input Pin A with the output of a DAC reference
located in the comparator. For more information, see the “DAC Reference” section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator.

The comparator source outputs 1, if Input Pin A has a value greater than Input Pin B or the 10-
bit DAC reference. Otherwise, it outputs 0.

Invert comparator output
Select this check box to apply a logical NOT to the output of the comparator source. For example,
when the comparator source outputs 1, the circuit inverts it to 0.

Synchronization
Select Asynchronous to pass the asynchronous version of the comparator output. Select
Synchronous to pass the synchronous version of the comparator output. Selecting
Synchronous enables the Qualification period option.

Qualification period
Qualify changes in the comparator output before passing them along. The Passed through
setting passes changes in the comparator value along without qualifying them. The consecutive
clocks settings pass changes in the comparator value along after receiving the specified number
of consecutive samples with the same value. Use this setting to prevent intermittent and spurious
changes in the comparator output.

Sample time
Specify the time interval between samples. To inherit sample time from the upstream block, set
this parameter to -1.

2 Blocks

2-14

References
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator, Literature
Number: SPRUGE5, from the Texas Instruments Web site.

 C2802x/C2803x/C2806x/F28M3x COMP

2-15

C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/
F2837xD/F2837xS/F2838x/F28004x/F28002x/
F28003x ADC
Configure ADC to sample analog pins and output digital data

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
Configures the Type 3 to Type 5 ADC to output a constant stream of data collected from the ADC pins
on the DSP. For more information on ADC types, refer to C2000 Real-Time Control Peripheral
Reference Guide.

An ADC block allows for reading one ADC channel. Use multiple ADC blocks to read multiple ADC
channels.

Ports
Output

Data — ADC data
vector

The output of the ADC is a vector of uint16 values.
Data Types: uint16

2 Blocks

2-16

Parameters
SOC Trigger

ADC Module — Select module to use
A (default) | B | A and B

Select ADC Module 1 or ADC Module 2 for conversion.

Select ADC Module A through D for the processors that support Type 4 ADC.

Note The ADC Module parameter is available only for Texas Instruments C2000 processors that
support Type 3, Type 4, or Type 5 ADC.

ADC Resolution — Select 12 bit or 16 bit resolution
A (default) | B | A and B

Select 12-bit (Single-ended input) or 16-bit (Differential inputs) ADC resolution options.

In 12-bit mode, only single-ended input is supported. In 16-bit mode, the input voltage to the
converter is sampled through a pair of input pins, that means the differential inputs between the two
channels is converted.

Note

• This parameter is supported only for Texas Instruments C2000 F2837xD, Texas Instruments
C2000 F2838x and Texas Instruments C2000 F2837xS processors.

• The 16-bit (Differential inputs) ADC mode is not enabled by default in most of the processors.

Sampling mode — Select sampling type
Single (default) | Simultaneous

Type of sampling to use for the signals:

• Single — Samples the selected channels sequentially,
• Simultaneous — Samples the corresponding channels of modules 1 and 2 at the same time. The

hardware allows each signal of a pair to be sampled at the same time.

Note This parameter is supported only for Texas Instruments C2000 F28M3x processors.

SOC trigger number — Start of conversion number
SOC0 (default) | SOC1 | SOC2 | …

Identify the start-of-conversion trigger by number. In single sampling mode, you can select an
individual trigger. In simultaneous sampling mode, you can select triggers in pairs.

SOCx acquisition window — Length of the acquisition period
7 (default) | 8 | ...

 C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ADC

2-17

Define the length of the acquisition period in ADC clock cycles. The value of this parameter depends
on the SYSCLK and the minimum ADC sample time. The value of SOC acquisition window is
subtracted by 1 and set to ACQPS field in ADC register. For more information, see the ADC
Acquisition (Sample and Hold) Window section of the TMS320x2802x, 2803x Piccolo Analog-to-Digital
Converter (ADC) and Comparator Reference Guide.

SOCx trigger source — Source that triggers the start of conversion
Software (default) | EVA | External pin

Select the source that triggers the start of conversion. The following types of inputs are available:

• Software.
• CPU Timers 0/1/2 interrupts.
• XINT2 SOC.
• ePWMx SOCA and SOCB.

If you set SOCx trigger source to XINT2_XINT2SOC, use the Input5 pin assignment parameter at
Hardware Implementation > Target hardware resources to define the external GPIO pin that
triggers the start of conversion.

Note The SOCx trigger source input ePWMx SOCA and SOCB range will vary according the
processor selected.

ADCINT will trigger SOCx — Use ADC interrupt to trigger SOC
No ADCINT (default) | ADCINT1 | ADCINT2

At the end of conversion, use the ADCINT1 or ADCINT2 interrupt to trigger a start of conversion
(SOC). This loop creates a continuous sequence of conversions. The default selection, No ADCINT
disables this parameter. To set the interrupt, select the Post interrupt at EOC trigger option, and
choose the appropriate interrupt.

Sample time — Interval at which block reads data
0.1 (default)

Time in seconds between consecutive sets of samples that are converted for the selected ADC
channel(s). This is the rate at which values are read from the result registers. To execute this block
asynchronously, set Sample Time to -1, check the Post interrupt at the end of conversion box.

Data type — Select the output data type
uint16 (default) | double | single | int8 | uint8 | int16 | int32 | uint32

Date type of the output data.

Post interrupt at EOC trigger — Post interrupts when ADC triggers
Off (default) | on

Post interrupts when the ADC triggers EOC pulses. When you select this option, the dialog box
displays the Interrupt selection and ADCINT# continuous mode options.

Note For new processors, the Interrupt selection provides option ADCA#, ADCB# and so on.

2 Blocks

2-18

Interrupt selection — ADC interrupt selection
ADCINT1 (default) | ADCINT2

Select which interrupt the ADC posts after triggering an EOC pulse.

Dependencies

To enable this parameter, select Post interrupt at EOC trigger parameter.

ADC# continuous mode — Generate ADC interrupt
ADCINT1 (default) | ADCINT2

When the ADC generates an end of conversion (EOC) signal, generate an ADCINT# interrupt,
whether the previous interrupt flag has been acknowledged or not.

Dependencies

To enable this parameter, select Post interrupt at EOC trigger parameter.

Input channels

Conversions channel — Select ADC channel to which this ADC conversion applies
ADCINA0 (default) | ADCINA1 | ADCINA2 | …

Select the input channel to which this ADC conversion applies. For Type 4 ADC, if you select 16-bit
(differential inputs) mode, the differential voltage between the two channels is converted.

References
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator, Literature
Number: SPRUGE5, from the Texas Instruments Web site.

Version History
Introduced in R2016b

See Also
C28x Hardware Interrupt

Topics
“ADC-PWM Synchronization Using ADC Interrupt”
“Configuring Acquisition Window Width for ADC Blocks”

 C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ADC

2-19

C2803x LIN Receive
Receive data via local interconnect network (LIN) module on target

Description
The Local Interconnect Network (LIN) bus implements a serial communications protocol for
distributed automotive and industrial applications. In particular, LIN serves low cost applications that
do not require the bandwidth or robustness provided by the CAN protocol.

The LIN Receive block configures the target to receive scalar or vector data from the LINRX or
LINTX pins.

Each C2803x target has one LIN module. Your model can only contain one LIN Transmit and one LIN
Receive block per module.

The C2803x LIN Transmit block takes three inputs:

• ID: Set the value of the LIN ID for the LIN transmit node.
• TX ID Mask: Set the value of the LIN ID mask for the LIN transmit node.
• Data: Connect this input to the data source.

For more information and examples, see:

• “Configuring LIN Communications”
• “LIN-Based Control of PWM Duty Cycle”

Note Many LIN-specific settings are located under Peripherals > LIN in Hardware Implementation
-> Target Hardware Resources for your model. Verify that these settings meet the requirements of
your application.

Parameters
Data type

Select the data type the LIN block outputs to the model. Available options are single, int8,
uint8, int16, uint16, int32, or uint32. To interpret the data, the data type and data length
must match those of the data input to transmitting LIN node.

The default value is int16.

2 Blocks

2-20

Data length
Set the length of the data the LIN block outputs to the model. This value is measured in multiples
of the Data type. For example, if Data type is int16 and Data length is int16, the LIN block
outputs the data to the model in lengths of

1 x int16

If you set the Data length to a value greater than 1, the block outputs the data as vectors.

To interpret the data, the data type and data length must match those of the data input to
transmitting LIN node.

The default value is 1.

Note In a loopback configuration, the maximum data length cannot exceed 8 bytes. If the sum of
the incoming and the outgoing data exceeds the hardware buffer length of the LIN module, the
module discards incoming bytes of data.

Initial output
Set the initial value the DATA port outputs to the model before the LIN node has received data.

The default value is 0.
Action taken when connection times out

Specify what the LIN block outputs on the DATA port in response to a connection time-out. The
choices are:

• Output the last received value — the DATA port outputs the last data value the LIN
node received.

• Output custom value — the DATA port outputs the value defined by Output value when
connection times out.

The default value is Output the last received value.

If the LIN node has not received data, and you set this parameter to Output the last
received value, the DATA port outputs the Initial output value.

Output value when connection times out
Specify the custom value the DATA port outputs when Action taken when connection times
out is set to Output custom value and a connection timeout occurs.

Enable blocking mode
If you enable (select) this checkbox, the target application stops and waits for the LIN node to
receive data before continuing. If you disable this option, the application continues running and
does not wait for data to arrive.

The default value is disabled (deselected).
Verify checksum

If you enable (select) this option, the LIN node verifies the checksum it receives.

The default value is disabled (deselected).

 C2803x LIN Receive

2-21

Output receiving status
Enabling (selecting) this checkbox adds a status output to the LIN Receive block, as shown in
the following figure.

The status output reports the following values for each message the LIN node receives:

• 0: No error.
• -1: A time-out occurred while the block was waiting to receive data.
• -2: Unable to receive.
• Other status values represent the highest 8 bits of the SCI Flags Register. Convert these

values from decimal to binary. Then determine the meaning of these values by referring to
Table 14. SCI Flags Register (SCIFLR) Field Descriptions in TMS320F2803x Piccolo Local
Interconnect Network (LIN) Module, Literature Number SPRUGE2, available at the Texas
Instruments Web site.

Receive buffer interrupt
If you enable this option, the SCI node generates an interrupt after it receives a complete frame.
The default value is Disabled.

Checksum error interrupt
If you enable this option, the LIN block generates an interrupt when the incoming message
contains an invalid checksum.

The default value is Disabled.

The TXRX Error Detector Checksum Calculator verifies checksums for incoming messages. With
the classic LIN implementation, the checksum only covers the data fields. For LIN 2.0–compliant
messages, the checksum includes both the ID field and the data fields. If you enable this option,
the Checksum Calculator generates interrupts when it detects checksum errors, such as those
caused by LIN message collisions.

Framing error interrupt
If you enable this option, the LIN module generates interrupts when framing errors occur.

The default value is Disabled.
Overrun error interrupt

If you enable this option, the LIN module generates interrupt when overrun errors occur.

The default value is Disabled.
ID parity error interrupt

If you enable this option, the LIN module generates an ID-Parity interrupt when it receives an
invalid ID.

The default value is Disabled.

If you enable this option, also enable Parity mode in Hardware Implementation -> Target
Hardware Resources.

ID match interrupt
If you enable this option, the LIN module generates an interrupt when the LIN node validates the
ID in messages it receives.

2 Blocks

2-22

The default value is Disabled.
Sample time

Set the block's input sample time, Ts.

The default value is 0.1 seconds.

References
For detailed information on the LIN module, see TMS320F2803x Piccolo Local Interconnect Network
(LIN) Module, Literature Number SPRUGE2, available at the Texas Instruments Web site.

See Also
C2803x LIN Transmit (block reference)

“Configuring LIN Communications”

“LIN-Based Control of PWM Duty Cycle”

 C2803x LIN Receive

2-23

C2803x LIN Transmit
Transmit data from target via serial communications interface (SCI) to host

Description
The Local Interconnect Network (LIN) bus implements a serial communications protocol for
distributed automotive and industrial applications. In particular, LIN serves low cost applications that
do not require the bandwidth or robustness provided by the CAN protocol.

The C2803x LIN Transmit block takes three inputs:

• ID: Set the value of the LIN ID for the LIN transmit node.
• TX ID Mask: Set the value of the LIN ID mask for the LIN transmit node.
• Data: Connect this input to the data source.

Note Many LIN-specific settings are located under Peripherals > LIN in Hardware
Implementation > Target hardware resources for your model. Verify that these settings meet the
requirements of your application.

Parameters
Send checksum

Select this checkbox to include a checksum in the last data field of the checkbyte. LIN 2.0
implementations require this checksum.

The default value is unchecked (disabled).
Physical bus error interrupt

The LIN master node detects when the physical bus cannot convey a valid message. For example,
if the bus had a short circuit to ground or to VBAT. This raises a physical bus error flag in all of the
LIN nodes on the network. If you enable Physical bus error interrupt, the LIN transmit node
generates an interrupt in response to a physical bus error flag.

Bit error interrupt
If you enable this option, the LIN node compares the data it transmits and the data on the LIN
bus.

The default value is Disabled.

The TXRX Error Detector Bit Monitor compares data bits on the LIN transmit (LINTX) and
receive (LINRX) pins. If the data do not match, the Bit Monitor raises a bit-error flag. When you
enable this option, the bit-error flag also produces a bit-error interrupt.

2 Blocks

2-24

Transmit buffer interrupt
If you enable this option, the LIN node generates an interrupt while it is generating a checksum
and setting the Transmitter buffer register ready flag.

The default value is Disabled.

References
For detailed information on the SCI module, see TMS320F2803x Piccolo Local Interconnect Network
(LIN) Module, Literature Number SPRUGE2, available at the Texas Instruments Web site.

See Also
“Configuring LIN Communications”

“LIN-Based Control of PWM Duty Cycle”

 C2803x LIN Transmit

2-25

C281x ADC
Analog-to-digital converter (ADC)

Libraries:
C2000 Microcontroller Blockset C281x

Description
The C281x ADC block configures the C281x ADC to perform analog-to-digital conversion of signals
connected to the selected ADC input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result register of your digital signal
processor. You use this block to capture and digitize analog signals from external sources such as
signal generators, frequency generators, or audio devices.

Ports
Output

Data — ADC data
vector

The output of the C281x ADC is a vector of uint16 values. The output values are in the range 0 to
4095 because the C281x ADC is 12-bit converter.
Data Types:

Parameters
ADC Control

Module — Select module to use
A (default) | B | A and B

Specify which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0 through ADCINA7).
• B — Displays the ADC channels in module B (ADCINB0 through ADCINB7).
• A and B — Displays the ADC channels in both modules A and B (ADCINA0 through ADCINA7 and

ADCINB0 through ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode — Select conversion type
Sequential (default) | Simultaneous

Type of sampling to use for the signals:

2 Blocks

2-26

• Sequential — Samples the selected channels sequentially
• Simultaneous — Samples the corresponding channels of modules A and B at the same time

Start of conversion — Select start of conversion
Software (default) | EVA | External pin

Specify the type of signal that triggers the conversion:

• Software — Signal from software
• EVA — Signal from Event Manager A (only for Module A)
• EVB — Signal from Event Manager B (only for Module B)
• External — Signal from external hardware

Sample time — Interval at which block reads data
0.1 (default)

Time in seconds between consecutive sets of samples that are converted for the selected ADC
channel(s). This is the rate at which values are read from the result registers. To execute this block
asynchronously, set Sample Time to -1, check the Post interrupt at the end of conversion box.

To set different sample times for different groups of ADC channels, you must add separate C281x
ADC blocks to your model and set the desired sample times for each block.

Data type — Select the output data type
uint16 (default) | double | single | int8 | uint8 | int16 | int32 | uint32

Date type of the output data.

Post interrupt at end of conversion — Enable to post an asynchronous interrupt
Off (default) | on

Enable this check box to post an asynchronous interrupt at the end of each conversion. The interrupt
is posted at the end of conversion.

Input channels

Number of conversions — Select number of ADC channels for conversion
1 (default) | 2 | 3 | …

Number of ADC channels to use for analog-to-digital conversions.

Conversions no. # — Select ADC channel for each conversion number
1 (default) | 2 | 3 | …

Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be sampled multiple times during a single
conversion sequence. To oversample, specify the same channel for more than one conversion.
Converted samples are output as a single vector.

Use multiple output ports — Enable to output multiple ports
off (default) | on

 C281x ADC

2-27

If more than one ADC channel is used for conversion, you can use separate ports for each output and
show the output ports on the block. If you use more than one channel and do not use multiple output
ports, the data is output in a single vector.

More About
Triggering

The C281x ADC trigger mode depends on the internal setting of the source start-of-conversion (SOC)
signal. In unsynchronized mode the ADC is usually triggered by software at the sample time intervals
specified in the ADC block. For more information on configuring the specific parameters for this
mode, see “Configuring Acquisition Window Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the same module as the ADC triggers
the ADC. In this case, the ADC is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal setting. The ADC Start Event is set
in the C281x PWM block. See that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in cascaded mode.

Modes

The C281x ADC block supports ADC operation in dual and cascaded modes. In dual mode, either
module A or module B can be used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded mode, both module A and module B are used for a single ADC block.

Version History
Introduced in R2016b

See Also
C281x PWM | C28x Hardware Interrupt

2 Blocks

2-28

C281x CAP
Receive and log capture input pin transitions

Description
The C281x CAP module provides input capture functionality for systems where precise timing of
external events is important. The C281x CAP block sets parameters for the capture units (CAPs) of
the Event Manager (EV) module. The capture units log transitions detected on the capture unit pins
by recording the times of the input signal transitions into a two-level deep FIFO stack. You can set the
capture unit pins to detect rising edge, falling edge, either type of transition, or no transition. The cnt
output of the block gives the captured value of the EV running timer.

The C281x chip has six capture units — three associated with each EV module. Capture units 1, 2,
and 3 are associated with EVA and capture units 4, 5, and 6 are associated with EVB. Each capture
unit is associated with a capture input pin.

Each group of EV module capture units can use one of two general-purpose (GP) timers on the target
board. EVA capture units can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4. When a
transition occurs, the module stores the value of the selected timer in the two-level deep FIFO stack.

The C281x CAP module shares GP Timers with other C281 blocks. For more information and
guidance on sharing timers, see “Sharing General Purpose Timers Between C281x Peripherals”.

Note You can have up to two C281x CAP blocks in a model—one block for each EV module.

Outputs

This block has up to two outputs: a cnt (count) output and an optional, FIFO status flag output. The
cnt output holds the value of the EV timer captured during the detected transitions. The cnt output
gives the captured values of the running counter based on the value set in Output data format
parameter. The status flag outputs are:

• 0 — The FIFO is empty. Either no captures have occurred or the previously stored captures have
been read from the stack. (The binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The binary version of this flag is 01.)
• 2 — The FIFO has two entries in the stack registers. (The binary version of this flag is 10.)
• 3 — The FIFO has two entries in the stack registers and one or more captured values have been

lost. This occurs because another capture occurred before the FIFO stack was read. This means
that the FIFO stack is read when you execute the block as specified by your scheduling scheme
synchronously, if a sample time is used or asynchronously, if triggered by an interrupt or an idle
task. The new value is placed in the bottom register. The bottom register value is pushed to the
top of the stack and the top value is pushed out of the stack. (The binary version of this flag is 11.)

 C281x CAP

2-29

Parameters
Data Format Pane

Module
Select the Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.
• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data type of the status flag is uint16.

Output data format
The type of data to output:

• Send 2 elements (FIFO Buffer) — Sends the latest two values. The output is updated
when there are two elements in the FIFO, which is indicated by bit 13 or 11 or 9 being sent
(CAP x FIFO). If the CAP is polled when fewer than two elements are captures, old values are
repeated. The CAP registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored in the status flag.
2 The top value of the FIFO is read and stored in the output at index 0.
3 The new top value of the FIFO (the previously stored bottom stack value) is read and

stored in the output at index 1.

• Send 1 element (oldest) — Sends the older of the two most recent values. The output is
updated when there is at least one element in the FIFO, which is indicated by the bits 13:12,
or 11:10, or 9:8 being sent. The CAP registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored in the status flag.
2 The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value. The output is updated when
there is at least one element in the FIFO, which is indicated by the bits 13:12, or 11:10, or 9:8
being sent. The CAP registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored in the status flag.
2 If the FIFO buffer contains two entries, the bottom value is read and stored in the output.

If the FIFO buffer contains one entry, the top value is read and stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available, the previous data is sent.

Data type
Data type of the output data. Available options are auto, double, single, int8, uint8, int16,
uint16, int32, uint32, and boolean. The auto option uses the data type of a connected block
that outputs data to this block. If this block does not receive an input, auto sets the data type to
double.

Note The output of the C281x CAP block can be vectorized.

2 Blocks

2-30

CAP Panes

The CAP panes set parameters for individual CAPs. The particular CAP affected by a CAP pane
depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.
• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.
• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available types are Rising Edge, Falling
Edge, Both Edges, and No transition.

Time Base
Select which target board GP timer the CAP uses as a time base. CAPs 1, 2, and 3 can use
Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or Timer 4.

Clock source
This option is available only for the CAP 3 pane. You can select Internal to use the internal time
base. Also configure the Counting mode, Timer prescaler, and Timer period source for the
internal time base.

Select QEP circuit to generate the input clock from the quadrature encoder pulse (QEP)
submodule.

Counting mode
Select Up to generate an asymmetrical waveform output, or Up-down to generate a symmetrical
waveform output, as shown in the following illustration.

 C281x CAP

2-31

The Counting mode is for the internal timer settings.

When you specify the Counting mode as Up (asymmetric) the waveform:

• Starts low
• Goes high when the rising period counter value matches the Compare value
• Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric) the waveform:

• Starts low
• Goes high when the increasing period counter value matches the Compare value
• Goes low when the decreasing period counter value matches the Compare value

Counting mode becomes unavailable when you set Clock source to QEP circuit.
Timer Prescaler

Clock divider factor by which to prescale the selected GP timer to produce the desired timer
counting rate. Available options are none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. The
following table shows the rates that result from selecting each option.

Scaling Resulting Rate (µs)
none 0.01334

2 Blocks

2-32

Scaling Resulting Rate (µs)
1/2 0.02668
1/4 0.05336
1/8 0.10672
1/16 0.21344
1/32 0.42688
1/64 0.85376
1/128 1.70752

Note These rates assume a 75 MHz input clock.

Timer period source
Select Specify via dialog to enable the Timer period parameter. Select Input port to
create a block input, T1, that accepts the timer period value.

Timer period
Set the length of the timer period in clock cycles. Enter a value from 0 to 65535. The value
defaults to 65535.

If you know the length of a clock cycle, you can easily calculate how many clock cycles to set for
the timer period. The following calculation determines the length of one clock cycle:

Sysclk(150MHz) HISPCLK(1/2) InputClockPrescaler(1/128)

In this calculation, you divide the System clock frequency of 150 MHz by the high-speed clock
prescaler of 2. Then, you divide the resulting value by the timer control input clock prescaler,
128. The resulting frequency is 0.586 MHz. Thus, one clock cycle is 1/.586 MHz, which is 1.706
µs.

Post interrupt on CAP
Check this check box to post an asynchronous interrupt on CAP.

See Also

C28x Hardware Interrupt

 C281x CAP

2-33

C281x GPIO Digital Input
General-purpose I/O pins for digital input

Library
C2000 Microcontroller Blockset/ F28004x

Description
This block configures the general-purpose I/O (GPIO) registers that control the GPIO shared pins for
digital input. Each I/O port has one MUX register, which is used to select peripheral operation or
digital I/O operation.

Note To avoid losing new settings, click Apply before changing the IO Port parameter.

Parameters
IO Port

Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD, GPIOPE, GPIOPF, or GPIOPG and
select the I/O Port bits to enable for digital input. (There is no GPIOPC port on the C281x.) If you
select multiple bits, vector input is expected. Cleared bits are available for peripheral
functionality. Multiple GPIO DI blocks cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related peripheral are
enabled on the board. If you configure a pin as digital I/O, the corresponding peripheral function
cannot be used.

The following tables show the shared pins.

2 Blocks

2-34

GPIO A MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOA8
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

GPIO B MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0
1 PWM8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOB8
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is read as 16-bit integer data and
then cast to the selected data type. Valid data types are auto, double, single, int8, uint8,
int16, uint16, int32, uint32 or boolean.

Note The width of the vectorized data output by this block is determined by the number of bits
selected in the Block Parameters dialog box.

See Also
C281x GPIO Digital Output

C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F2838x-M4/F28004x/F28002x/F28003x GPIO Digital Input C280x/C2802x/C2803x/C2805x/C2806x/

 C281x GPIO Digital Input

2-35

C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F2838x-M4/F28004x/F28002x/F28003x
GPIO Digital Output

2 Blocks

2-36

C281x GPIO Digital Output
General-purpose I/O pins for digital output

Library
C2000 Microcontroller Blockset/ C281x

C2000 Microcontroller Blockset/F28004x

Description
This block configures the general-purpose I/O (GPIO) registers that control the GPIO shared pins for
digital output. Each I/O port has one MUX register, which is used to select peripheral operation or
digital I/O operation.

Note Fixed-point inputs are not supported for this block.

Note To avoid losing new settings, click Apply before changing the IO Port parameter.

Parameters
IO Port

Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD, GPIOPE, GPIOPF, or GPIOPG and
select the I/O Port bits to enable for digital input. (There is no GPIOPC port on the C281x.) If you
select multiple bits, vector input is expected. Cleared bits are available for peripheral
functionality. Multiple GPIO DO blocks cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related peripheral are
enabled on the board. If you configure a pin as digital I/O, the corresponding peripheral function
cannot be used.

The following tables show the shared pins.

 C281x GPIO Digital Output

2-37

GPIO A MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOA8
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

GPIO B MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0
1 PWM8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOB8
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

See Also
C281x GPIO Digital Input

2 Blocks

2-38

C281x PWM
Pulse width modulators (PWMs)

Description
F2812 DSPs include a suite of pulse width modulators (PWMs) used to generate various signals. This
block provides options to set the A or B module Event Managers to generate the waveforms you
require. The twelve PWMs are configured in six pairs, with three pairs in each module.

The C281x PWM module shares GP Timers with other C281 blocks. For more information and
guidance on sharing timers, see “Sharing General Purpose Timers Between C281x Peripherals”.

Note All inputs to the C281x PWM block must be scalar values.

Parameters
Timer Pane

Module
Specify which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and PWM5/PWM6).
• B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and PWMs in module B use Event
Manager B, Timer 3.

Waveform period source
Source from which the waveform period value is obtained. Select Specify via dialog to enter
the value in Waveform period or select Input port to use a value from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Waveform period
Period of the PWM waveform measured in clock cycles or in seconds, as specified in the
Waveform period units.

Note The term clock cycles refers to the high-speed peripheral clock on the F2812 chip. This
clock is 75 MHz by default because the high-speed peripheral clock prescaler is set to 2 (150
MHz/2).

 C281x PWM

2-39

Waveform type (counting mode)
Type of waveform to be generated by the PWM pair. The F2812 PWMs can generate two types of
waveforms: Asymmetric(Up) and Symmetric(Up-down). The following illustration shows the
difference between the two types of waveforms.

Waveform period units
Units in which to measure the waveform period. Options are Clock cycles, which refer to the
high-speed peripheral clock on the F2812 chip (75 MHz), or Seconds. Changing these units
changes the Waveform period value and the Duty cycle value and Duty cycle units selection.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

Outputs Pane

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated via the Output 1 pane, PWM3/PWM4
are on Output 2, and PWM5/PWM6 are on Output 3.

Duty cycle source
Select Specify via dialog to use the dialog box to enter a Duty cycle value for the pair of
PWM outputs. Select Input port to use the input port, W#, to enter a Duty cycle value for the
pair of PWM outputs.

The input port W1 corresponds to PWM1/PWM2. W2 corresponds to PWM3/PWM4. W3
corresponds to PWM5/6.

2 Blocks

2-40

Note All inputs to the C281x PWM block must be scalar values.

Duty cycle
Set the ratio of the PWM waveform pulse duration to the PWM Waveform period.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and Percentages. Changing these
units changes the Duty cycle value, and the Waveform period value and Waveform period
units selection.

Note Using percentages can cause some additional computation time in generated code. This
may or may not be noticeable in your application.

Logic Pane

Control logic source
Configure the control logic for all PWMs enabled on the Outputs tab. Valid settings are Specify
via dialog (default setting) or to Input port.

Specify via Dialog enables PWM control logic settings for each PWM output:

• Forced high causes the pulse value to be high.

Active high causes the pulse value to go from low to high.

Active low causes the pulse value to go from high to low.

Forced low causes the pulse value to be low.

Input port adds an input port to the PWM block for setting the C2000 ACTRX register. Each
PWM uses 2 bits to set the following options:

• 00 Forced Low
• 01 Active Low
• 10 Active High
• 11 Forced High

Bits 11–0 of the 16–bit Compare Action Control Registers for module A control PWM1-6

Bits 11–0 of the 16–bit Compare Action Control Registers for module B control PWM1-6

For example: If a decimal value of 3222 is read at the input port while using PWM module A, the
following PWM settings will be honored:

3222 = 0C96h = 110010010110b

So that:

• PW1: Active High
• PW2: Active Low

 C281x PWM

2-41

• PW3: Active Low
• PW4: Active High
• PW5: Forced Low
• PW6: Forced High

For more information, see the section on Compare Action Control Registers (ACTRA and ACTRB)
in the Texas Instruments™ document “TMS320x281x DSP Event Manager (EV) Reference Guide”,
literature number SPRU065.

Deadband Pane

Use deadband for PWM#/PWM#
Enables a deadband area without signal overlap at the beginning of particular PWM pair signals.
The following figure shows the deadband area.

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband period, determines the size of
the deadband. Selectable values are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select Specify via dialog to enter the
values in the Deadband period field or select Input port to use a value, in clock cycles, from
the input port.

Note All inputs to the C281x PWM block must be scalar values.

Deadband period
Value that, when multiplied by the Deadband prescaler, determines the size of the deadband.
Selectable values are from 1 to 15.

2 Blocks

2-42

ADC Control Pane

ADC start event
Controls whether this PWM and ADC associated with the same EV module are synchronized.
Select None to disable synchronization or select an event to generate the source start-of-
conversion (SOC) signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV does not generate an SOC signal
and the ADC is triggered by software (that is, the A/D conversion occurs when the ADC block
is executed in the software).

• Underflow interrupt — The EV generates an SOC signal for the ADC associated with the
same EV module when the board's general-purpose (GP) timer counter reaches a hexadecimal
value of FFFF.

• Period interrupt — The EV generates an SOC signal for the ADC associated with the same
EV module when the value in GP timer matches the value in the period register. The value set
in Waveform period above determines the value in the register.

Note If you select Period interrupt and specify a sampling time less than the specified
(Waveform period)/(Event timer clock speed), zero-order hold interpolation will occur.
(For example, if you enter 64000 as the waveform period, the period for the timer is 64000/75
MHz = 8.5333e-004. If you enter a Sample time in the C281x ADC dialog box that is less
than this result, it will cause zero-order hold interpolation.)

• Compare interrupt — The EV generates an SOC signal for the ADC associated with the
same EV module when the value in the GP timer matches the value in the compare register.
The value set in Duty cycle above determines the value in the register.

 C281x PWM

2-43

C281x QEP
Quadrature encoder pulse circuit

Description
Each F2812 Event Manager has three capture units, which can log transitions on its capture unit
pins. Event Manager A (EVA) uses capture units 1, 2, and 3. Event Manager B (EVB) uses capture
units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature encoded input pulses on
these capture unit pins. QEP pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). The circuit counts both edges of the QEP
pulses, so the frequency of the QEP clock is four times the input sequence frequency.

The QEP, in combination with an optical encoder, is useful for obtaining speed and position
information from a rotating machine. Logic in the QEP circuit determines the direction of rotation by
which sequence is leading. For module A, if the QEP1 sequence leads, the general-purpose (GP)
Timer counts up and if the QEP2 sequence leads, the timer counts down. The pulse count and
frequency determine the angular position and speed.

The C281x QEP module shares GP Timers with other C281 blocks. For more information and
guidance on sharing timers, see “Sharing General Purpose Timers Between C281x Peripherals”.

Parameters
Module

Specify which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.
• B — Uses QEP3 and QEP4 pins.

Counting mode
Specify how to count the QEP pulses:

• Counter — Count the pulses based on GP Timer 2 (or GP Timer 4 for EVB).
• RPM — Count the rotations per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the direction to use as positive
rotation. This field appears only if you select RPM.

Initial count
Initial value for the counter. The value defaults to 0.

2 Blocks

2-44

Encoder resolution (pulse/revolution)
Number of QEP pulses per revolution. This field appears only if you select RPM.

Enable QEP index
Reset the QEP counter to zero when the QEP index input on CAP3_QEPI1 transitions from low to
high.

Enable index qualification mode
Qualify the QEP index input on CAP3_QEPI1. Check that the levels on CAP1_QEP1 and
CAP2_QEP2 are high before asserting the index signal as valid.

Timer period
Set the length of the timer period in clock cycles. Enter a value from 0 to 65535. The value
defaults to 65535.

If you know the length of a clock cycle, you can easily calculate how many clock cycles to set for
the timer period. The following calculation determines the length of one clock cycle:

Sysclk(150MHz) HISPCLK(1/2) InputClockPrescaler(1/128)

In this calculation, you divide the System clock frequency of 150 MHz by the high-speed clock
prescaler of 2. Then, you divide the resulting value by the timer control input clock prescaler,
128. The resulting frequency is 0.586 MHz. Thus, one clock cycle is 1/.586 MHz, which is 1.706
µs.

Sample time
Time interval, in seconds, between consecutive reads from the QEP pins.

Data type
Data type of the QEP pin data. The circuit reads the data as 16-bit data and then casts it to the
selected data type. Valid data types are auto, double, single, int8, uint8, int16, uint16,
int32, uint32 or boolean.

References
For more information on the QEP module, consult the following documents, available at the Texas
Instruments Web site:

• TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse (eQEP) Module Reference
Guide, Literature Number SPRU790

• Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in TMS320x280x, 28xxx as a
Dedicated Capture Application Report, Literature Number SPRAAH1

 C281x QEP

2-45

C281x Timer
Configure general-purpose timer in Event Manager module

Description
The C281x contains two event-manager (EV) modules. Each module contains two general-purpose
(GP) timers. You can use these timers as independent time bases for various applications.

Use the C281x Timer block to set the periodicity of one GP timer and the conditions under which it
posts interrupts. Each model can contain up to four C281x Timer blocks.

The C281x Timer module configures GP Timers that other C281 blocks share. For more information
and guidance on sharing timers, see “Sharing General Purpose Timers Between C281x Peripherals”.

Parameters
ModuleTimer no

Select which of four possible timers to configure. Setting Module to A lets you select Timer 1 or
Timer 2 in Timer no. Setting Module to B lets you select Timer 3 or Timer 4 in Timer no.

Clock source
When Timer no has a value of Timer 2 or Timer 4, use this parameter to select the clock
source for the event timer. You can choose either Internal or QEP circuit. When you select
Internal, you can configure other options such as Timer period source, Counting mode, and
Timer prescaler.

Timer period source
Select the source of the event timer period. Use Specify via dialog to set the period using
Timer period. Select Input port to create an input, T, that accepts the value of the timer
period in clock cycles, from 0 to 65535. Timer period source becomes unavailable when Clock
source is set to QEP circuit.

Timer period
Set the length of the timer period in clock cycles. Enter a value from 0 to 65535. The value
defaults to 10000.

If you know the length of a clock cycle, you can easily calculate how many clock cycles to set for
the timer period. The following calculation determines the length of one clock cycle:

Sysclk(150MHz) HISPCLK(1/2) InputClockPrescaler(1/128)

In this calculation, you divide the System clock frequency of 150 MHz by the high-speed clock
prescaler of 2. Then, you divide the resulting value by the timer control input clock prescaler,
128. The resulting frequency is 0.586 MHz. Thus, one clock cycle is 1/.586 MHz, which is 1.706
µs.

2 Blocks

2-46

Compare value source
Select the source of the compare value. Use Specify via dialog to set the period using the
Compare value parameter. Select Input port to create a block input, W, that accepts the
value of the compare value, from 0 to 65535.

Compare value
Enter a constant value for comparison to the running timer value for generating interrupts. Enter
a value from 0 to 65535. The value defaults to 5000. The timer only generates interrupts if you
enable Post interrupt on compare match.

Counting mode
Select Up to generate an asymmetrical waveform output, or Up-down to generate a symmetrical
waveform output, as shown in the following illustration.

When you specify the Counting mode as Up (asymmetric) the waveform:

• Starts low
• Goes high when the rising period counter value matches the Compare value
• Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric) the waveform:

• Starts low
• Goes high when the increasing period counter value matches the Compare value

 C281x Timer

2-47

• Goes low when the decreasing period counter value matches the Compare value

Counting mode becomes unavailable when Clock source is set to QEP circuit.
Timer prescaler

Divide the clock input to produce the desired timer counting rate.

Timer prescaler becomes unavailable when Clock source is set to QEP circuit.
Post interrupt on period match

Generate an interrupt when the value of the timer reaches its maximum value as specified in
Timer period.

Post interrupt on underflow
Generate an interrupt when the value of the timer cycles back to 0.

Post interrupt on overflow
Generate an interrupt when the value of the timer reaches its maximum, 65535. Also set Timer
period to 65535 for this parameter to work.

Post interrupt on compare match
Generate an interrupt when the value of the timer equals Compare value.

References
TMS320x281x DSP Event Manager (EV) Reference Guide, Literature Number: SPRU065, available
from the Texas Instruments Web site.

See Also
C28x Hardware Interrupt

2 Blocks

2-48

C2000 Division IQN
Divide IQ numbers

Library
C2000 Microcontroller Blockset/ Optimization/ C28x IQmath

Description
This block divides two numbers that use the same Q format, using the Newton-Raphson technique.
The resulting quotient uses the same Q format at the inputs.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

 C2000 Division IQN

2-49

C2000 Float to IQN
Convert floating-point number to IQ number

Description
This block converts a floating-point number to an IQ number. The Q value of the output is specified in
the dialog.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Q value

Q value from 1 to 30 that specifies the precision of the output

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

2 Blocks

2-50

C2000 Fractional part IQN
Fractional part of IQ number

Description
This block returns the fractional portion of an IQ number. The returned value is an IQ number in the
same IQ format.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 C2000 Fractional part IQN

2-51

C2000 Fractional part IQN x int32
Fractional part of result of multiplying IQ number and long integer

Description
This block multiplies an IQ input and a long integer input and returns the fractional portion of the
resulting IQ number.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-52

C2000 Integer part IQN
Integer part of IQ number

Description
This block returns the integer portion of an IQ number. The returned value is a long integer.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 C2000 Integer part IQN

2-53

C2000 Integer part IQN x int32
Integer part of result of multiplying IQ number and long integer

Description
This block multiplies an IQ input and a long integer input and returns the integer portion of the
resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-54

C2000 IQN to Float
Convert IQ number to floating-point number

Description
This block converts an IQ input to an equivalent floating-point number. The output is a single floating-
point number.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 C2000 IQN to Float

2-55

C2000 IQN x int32
Multiply IQ number with long integer

Description
This block multiplies an IQ input and a long integer input and produces an IQ output of the same Q
value as the IQ input.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-56

C2000 IQN x IQN
Multiply IQ numbers with same Q format

Description
This block multiplies two IQ numbers. Optionally, it can also round and saturate the result.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Multiply option

Type of multiplication to perform:

• Multiply — Multiply the numbers.
• Multiply with Rounding — Multiply the numbers and round the result.
• Multiply with Rounding and Saturation — Multiply the numbers and round and

saturate the result to the maximum value.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

 C2000 IQN x IQN

2-57

C2000 IQN1 to IQN2
Convert IQ number to different Q format

Description
This block converts an IQ number in a particular Q format to a different Q format.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Q value

Q value from 1 to 30 that specifies the precision of the output

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

2 Blocks

2-58

C2000 IQN1 x IQN2
Multiply IQ numbers with different Q formats

Description
This block multiples two IQ numbers when the numbers are represented in different Q formats. The
format of the result is specified in the dialog box.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Q value

Q value from 1 to 30 that specifies the precision of the output

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

 C2000 IQN1 x IQN2

2-59

C2000 Magnitude IQN
Magnitude of two orthogonal IQ numbers

Description
This block calculates the magnitude of two IQ numbers using

a2 + b2

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The users guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-60

C2000 Saturate IQN
Saturate IQ number

Description
This block saturates an input IQ number to the specified upper and lower limits. The returned value is
an IQ number of the same Q value as the input.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Upper Limit

Maximum real-world value to which to saturate
Lower Limit

Minimum real-world value to which to saturate

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

 C2000 Saturate IQN

2-61

C2000 Square Root IQN
Square root or inverse square root of IQ number

Description
This block calculates the square root or inverse square root of an IQ number and returns an IQ
number of the same Q format. The block uses table lookup and a Newton-Raphson approximation.

Negative inputs to this block return a value of zero.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Function

Whether to calculate the square root or inverse square root

• Square root (_sqrt) — Compute the square root.
• Inverse square root (_isqrt) — Compute the inverse square root.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

2 Blocks

2-62

C2000 Trig Fcn IQN
Sine, cosine, or arc tangent of IQ number

Description
This block calculates basic trigonometric functions and returns the result as an IQ number. Valid Q
values for _IQsinPU and _IQcosPU are 1 to 30. For all others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding Texas Instruments library
function during code generation. The TI function uses a global Q setting and the MathWorks code
used by this block dynamically adjusts the Q format based on the block input. See “Using the IQmath
Library” for more information.

Parameters
Function

Type of trigonometric function to calculate:

• _IQsin — Compute the sine (sin(A)), where A is in radians.
• _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where A is in per-unit radians.
• _IQcos — Compute the cosine (cos(A)), where A is in radians.
• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)), where A is in per-unit radians.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath Library - A
Virtual Floating Point Engine, Literature Number SPRC087, available at the Texas Instruments Web
site. The user's guide is included in the zip file download that also contains the IQmath library
(registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part IQN, C2000
Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to
Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000
Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN, C2000 Trig Fcn IQN

 C2000 Trig Fcn IQN

2-63

F2807x/F2837xD/F2837xS/F28004x/F28003x/
F2838x DAC
Configures the DAC to generate an analog output on the specified DAC channel A/B/C (12-bit)

Libraries:
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
Generate an analog output on the specified DAC channel A, B, or C for F2837x/F2807x/F28004x and
F2838x/C28x processors. The block accepts a 12–bit value as an input in the range 0 to 4095. You can
saturate a value higher than 4095 to 4095 with the Saturate on input outflow option.

The output pins of this block are multiplexed with the ADC block input. When you use a DAC block in
your model, the corresponding channels of the ADC cannot be used as input. If used, the ADC
samples the DAC output.

The pins that are shared between ADC and DAC are DACOUTA/ADCINA0, DACOUTB/ADCINA1, and
DACOUTC/ADCINB1. The input to the DAC block can be double, float, int, and uint. The block
typecasts the input to uint16.

Ports
Input

Port_1 — Input signal
real | scalar

The input port through which the block accepts the digital input value to convert it to analog signal.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | double

Parameters
DAC channel — The DAC channel to generate analog output
12 (default)

Enter the DAC channel on which to generate the analog signal. The DAC channels that you can select
are A, B, or C.

Saturate on input overflow (>4095) — The option to saturate the input value on input overflow
off | on

2 Blocks

2-64

Select this check box to saturate the input value to 4095 when there is an input value is higher than
4095.

Compatibility Considerations

Earlier to R2021b, when Saturate on input overflow (>4095) parameter is deselected, an input
value to the DAC greater than 65536 results the output to saturate at 65535. Starting R2021b, the
output wraps around i.e., for an input of 65580, results in output 44 (65580-65536).

Version History
Introduced in R2016b

See Also
Topics
c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F28004x/F28002x/F28003x ePWM
C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/
F28003x ADC

 F2807x/F2837xD/F2837xS/F28004x/F28003x/F2838x DAC

2-65

F2837xD/F2838x/F2838x-M4 IPC Receive
Receive data from either core

Libraries:
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2838x / C28x

Description
The IPC Receive block receives and outputs data sent from one Core to the other.

Core1 transmits data to its allocated memory (Core1-to-Core2 Message RAM) and receives data from
the allocated memory of Core2 (Core2-to-Core1 Message RAM). Similarly Core2 transmits data to its
allocated memory (Core2-to-Core1 Message RAM) and receives data from allocated memory of Core1
(Core1-to-Core2 Message RAM). For F2838xD, Core1/Core2 can be CPU1,CPU2 or ARM Cortex-M4
(CM) and for F2837xD, Core1/Core2 can be CPU1 or CPU2.

If Core1 and Core2 are both C28x core, then the data and channel structure between two cores are
allocated in Message RAM and the data array is allocated in Global Shared RAM. In C28x core, by
default all the channel structures are created in Message RAM.

However, if one of the core is ARM Cortex M4 (applicable only for F2838x), then the data array is
allocated only using Message RAM as global shared RAM is not available between cores. In order to
accommodate more data, only required channel structures are created in Message RAM. Hence if the
channel number used for transmit block in one core does not match with the receive block in other
core the data transmission will not occur.

A hardware interrupt block can be used along with the IPC Receive block for receiving data based on
hardware interrupts.

• C28x processor - Channels 0, 1, 2, and 3 are configured for hardware interrupts IPC0, IPC1,
IPC2, and IPC3 respectively.

2 Blocks

2-66

• F2838x-M4 processor - Channels 0, 1, 2, 3, 4, 5, 6 and 7 are configured for hardware interrupts
IPC0, IPC1, IPC2, IPC3, IPC4, IPC5, IPC6 and IPC7 respectively.

These hardware interrupts can be set in the hardware interrupt block using these parameters: CPU
interrupt number 1 and PIE interrupt numbers 13, 14, 15, and 16 respectively.

Ports
Output

Out — IPC receive
vector | scalar

Data read from the other Core.

Status — IPC receive status
0 | 1 | 2 | 3 | 4 | 6

The status port outputs one of these values:

• 0 — No errors
• 1 — Data not available
• 2 — Data type mismatch
• 4 — Data length mismatch
• 6 — Data type and Data length mismatch

Note When no data is transmitted, the IPC receive block receives 0 of uint16 data type and data type
mismatch status is displayed

Parameters
Source — Source selected to receive data
C28x (CPU1/CPU2)/CPU1 (default) | ARM Cortex-M4 (CM)/CPU2

The source at which you want to receive data. The source selection is based on the processor you
choose. For F2838x(C28x) processor, the source is either C28x (CPU1/CPU2) or ARM Cortex-M4
(CM). For F2838x-M4 ARM core processor, the source is CPU1 or CPU2.

The IPC Receive block mask displays the current source and the channel selected. For example, if the
block displays C28x_Ch0, then the source is C28x (CPU1/CPU2) and channel is 0. Similarly if the
IPC Receive block displays CM_Ch1, then the source is ARM Cortex-M4 (CM) and channel is 1.

Note This parameter is only available for F2838x(C28x) and F2838x-M4 ARM core processors.

Channel — Channel selected to receive data
0 (default) | 0–31

The channel at which you want to receive data. Each channel is a separate memory location in the
shared memory.

 F2837xD/F2838x/F2838x-M4 IPC Receive

2-67

Note The transmitter and receiver have 32 channels each to transmit and receive data. For data
transmission and reception, the transmitter and receiver must be set to the same channel number.

Data type — Type of data to be received
uint16 (default) | single | int8 | uint8 | int16 | int32 | uint32 | boolean

The type of data the block receives.

Vector data is stored in the global shared RAM, and the address of the data is stored in the MSGRAM.

Data length — Size of data to be received
1 (default) | positive integer

The number of data units received at each sample time. If the data length is 1, the block interprets
each incoming piece of data as a scalar value; if the data length is greater than 1, the block interprets
each incoming piece of data as a vector with length equal to Data length. The maximum size for
scalar and vector data is 32 bits.

Enable blocking — Specify if Core must wait to read data
off (default) | on

When enabled, the Core waits until data is available from the other Core.

Sample time — Interval at which block reads data
0.001 (default) | –1 | positive scalar

The time between data samples, measured in seconds. When you set this parameter to -1, Simulink
determines the best sample time for the block based on the block context within the model.

Version History
Introduced in R2018a

See Also
F2837xD/F2838x/F2838x-M4 IPC Transmit

2 Blocks

2-68

F2837xD/F2838x/F2838x-M4 IPC Transmit
Transmit data to either core

Libraries:
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2838x / C28x

Description
The IPC Transmit block transmits data from one Core to the other.

Core1 transmits data to its allocated memory (Core1-to-Core2 Message RAM) and receives data from
the allocated memory of Core2 (Core2-to-Core1 Message RAM). Similarly Core2 transmits data to its
allocated memory (Core2-to-Core1 Message RAM) and receives data from allocated memory of Core1
(Core1-to-Core2 Message RAM). For F2838xD, Core1/Core2 can be CPU1,CPU2 or ARM Cortex-M4
(CM) and for F2837xD, Core1/Core2 can be CPU1 or CPU2.

If Core1 and Core2 are both C28x core, then the data and channel structure between two cores are
allocated in Message RAM and the data array is allocated in Global Shared RAM. In C28x core, by
default all the channel structures are created in Message RAM.

However, if one of the core is ARM Cortex M4 (applicable only for F2838x), then the data array is
allocated only using Message RAM as global shared RAM is not available between cores. In order to
accommodate more data, only required channel structures are created in Message RAM. Hence if the
channel number used for transmit block in one core does not match with the receive block in other
core the data transmission will not occur.

 F2837xD/F2838x/F2838x-M4 IPC Transmit

2-69

Ports
Input

Input — Data to be send to the other Core
uint16 | single | int8 | uint8 | int16 | int32 | uint32 | boolean

The port accepts data to be transmitted to the other Core as a vector or scalar.

Parameters
Destination — Destination selected to send data
C28x (CPU1/CPU2)/CPU1 (default) | ARM Cortex-M4 (CM)/CPU2

The destination to which you want to send data. The destination selection is based on the processor
you choose. For F2838x(C28x) processor, the destination is either C28x (CPU1/CPU2) or ARM Cortex-
M4 (CM). For F2838x-M4 ARM core processor, the destination is CPU1 or CPU2.

The IPC Transmit block mask displays the current destination and the channel selected. For example,
if the block displays C28x_Ch0, then the destination is C28x (CPU1/CPU2) and channel is 0.
Similarly if the IPC Transmit block displays CM_Ch1, then the destination is ARM Cortex-M4 (CM)
and channel is 1.

Note This parameter is only available for F2838x(C28x) and F2838x-M4 ARM core processors.

Channel — Channel selected to transmit data
0 (default) | 0–31

The channel from which you want to transmit data. Each channel is a separate memory location in
the shared memory.

Note The transmitter and receiver have 32 channels each to transmit and receive data. For data
transmission and reception, the transmitter and receiver must be set to the same channel number.

Enable blocking — Specify if Core must wait until sent data is read
off (default) | on

When enabled, after sending data, the Core waits until the other Core reads the data.

Version History
Introduced in R2018a

See Also
F2837xD/F2838x/F2838x-M4 IPC Receive

2 Blocks

2-70

F2838x-M4 UART Receive
Receive data from the Universal Asynchronous Receiver Transmitter (UART) port

Libraries:
C2000 Microcontroller Blockset F2838x / M4

Description
Receive serial data from the Universal Asynchronous Receiver/ Transmitter (UART) port.

You can specify the ASCII characters for packaging your data with the additional package header and
terminator. You can specify the data type and the data length that you want to receive using the
block.

DMA interrupt will be used in the background for Data transfer from Receive FIFO to buffer.
UART_DMARx interrupt will be triggered when any data will be received in the FIFO.

Ports
Output

Data — UART receive data
vector | scalar

Outputs the data read from the UART port.

Status — UART receive status
0 | 1 | 2 | 3 | 4 | 8

The status port outputs one of these values:

• 0 — represents no error in data reception
• 1 — represents frame error
• 2 — represents parity error
• 3 — represents data synchronization error
• 4 — represents a break in the data reception
• 8 — represents an overrun error.

Parameters
Additional package header — Prefix header
S (default)

Specify the additional package header to use as the prefix before the data packet to synchronize the
data packets.

 F2838x-M4 UART Receive

2-71

Additional package terminator — Suffix terminator
E (default)

Specify the additional package terminator to use as the suffix after the data packet to synchronize the
data packets.

Data type — Type of data to be received
uint8 (default) | double | single | int8 | int8 | int16 | int32 | uint32 | boolean

Select the output data type.

Data length — Size of data to be received
1 (default) | positive integer

Specify the data length to receive.

Enable blocking mode — Enable blocking mode for data transmission
off (default) | on

Enabling this option ensures that the FIFO buffer is checked for data availability before receiving the
data.

Sample time — Interval at which block reads data
0.1 (default)

Specify the sample time for receiving data. To execute this block asynchronously, set Sample Time to
-1.

Version History
Introduced in R2020a

See Also
F2838x-M4 UART Transmit

2 Blocks

2-72

F2838x-M4 UART Transmit
Send serial data to the Universal Asynchronous Receiver Transmitter (UART) port

Libraries:
C2000 Microcontroller Blockset F2838x / M4

Description
Send serial data through the Universal asynchronous Receiver/ Transmitter (UART) port. You can
specify ASCII characters for packaging your data with the additional package header and terminator.

DMA will be used internally to copy data in FIFO.

Ports
Input

Data — UART send data
vector | scalar

The port sends the data to the UART port.

Parameters
Additional package header — Prefix header
S (default)

Specify the additional package header to use as the prefix before the data packet to synchronize the
data packets.

Additional package terminator — Suffix terminator
E (default)

Specify the additional package terminator to use as the suffix after the data packet to synchronize the
data packets.

Enable blocking mode — Enable blocking mode for data transmission
off (default) | on

Enabling this option ensures that the FIFO buffer is checked for data availability before sending the
data.

Version History
Introduced in R2020a

 F2838x-M4 UART Transmit

2-73

See Also
F2838x-M4 UART Receive

2 Blocks

2-74

F2807x/F2837xD/F2837xS/F28004x/F2838x/
F28002x/F28003x CMPSS
Compare two input voltages on comparator pins

Libraries:
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
The Comparator Subsystem consists of two modules, Comparator High (COMPH) and Comparator
Low (COMPH). Each module generates a high digital output when the voltage on the first input pin
(positive input) is greater than the voltage on the second input pin (negative input). And each module
generates a low digital output when the voltage on the first input pin (positive input) is less than the
voltage on the second input pin (negative input).

The second input pin can either be the external pin or the DAC module.

Ports
Input

DAC — DAC module
scalar

12-bit DAC reference value is used for the second input pin of the comparator.

The DAC range is between 0 to 4095. Any value outside the range is saturated.

Dependencies

The DAC port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to DAC module
• Specify DAC/RAMP parameter(s) Via is set to Input port

REF — Ramp reference value
scalar

Ramp reference value used by the ramp generator to create a ramp reference voltage for the second
input pin of the comparator.

The REF value should be in the range 0 to 65535. Any value outside the range is saturated.

 F2807x/F2837xD/F2837xS/F28004x/F2838x/F28002x/F28003x CMPSS

2-75

Dependencies

The REF port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Input port
• This port is available only for the COMPH module.

DEC — RAMP decrement value
scalar

Ramp decrement value used by the ramp generator to create a ramp reference voltage for the second
input pin of the comparator.

DEC range is between 0 to 65535. Any value outside the range is saturated.

Dependencies

The DEC port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Input port
• This port is available only for the COMPH module.

DLY — RAMP delay value
scalar

Ramp delay value used by the ramp generator to create a ramp reference voltage for the second
input pin of the comparator.

DLY range is between 0 to 8192. Any value outside the range is saturated.

Dependencies

The DLY port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Input port
• This port is available only for the COMPH module.

LCLR — Latch clear
scalar

Signal to clear the comparator latched output. Any value greater than 0 will clear the latch output.

Dependencies

The latch clear port appears only when Enable latch clear parameter is selected.

2 Blocks

2-76

Output

STS — Comparator status output
scalar

The comparator module outputs 1, if the voltage on the first input pin is greater than the second
input pin. Otherwise, it outputs 0.

LTH — Comparator latch
scalar

The comparator latch output is the tripped state of the CMPSS comparator after it is digitized and
qualified by a digital filter.

The latched value can either be cleared by the software or PWMSYNC.

Dependencies

To enable this port, select the Enable latch output parameter.

Parameters
Comparator module — Indicates which module to use
CMPSS1_COMPH (default) | CMPSSx_COMPL | CMPSSx_COMPH | where x ranges from 1 to 8

Select which comparator module should be configured to output the comparison result.

Note Number of modules available will vary for different processors.

Second input — Source of second input pin
External pin (default) | Internal DAC

The voltage source of second input pin (negative input pin), specified as either External pin or
Internal DAC.

DAC source select — Source of internal DAC
DAC module (default) | RAMP module

Select source of the internal DAC to generate voltage for the negative input pin, specified as either
DAC module or RAMP module.

Dependencies

This parameter is available only for the COMPH module.

Specify DAC/RAMP parameter(s) via — Configure source DAC/RAMP value source
Dialog (default) | Input port

Select if the DAC or RAMP values are to be specified via the input port or from the dialog.

When you select input port, the block generates input ports for the comparator module.

When you set DAC source select parameter to DAC module, the block generates DAC port and
when DAC source select is set to RAMP module it generates REF, DEC, and DLY port.

 F2807x/F2837xD/F2837xS/F28004x/F2838x/F28002x/F28003x CMPSS

2-77

Parameter dependency

This parameter is available only for the COMPH module.

DAC value (DACH) — Specify DAC value
0 (default)

Specify the DAC value for internal DAC to generate the voltage on the negative input.

DAC initial value — Specify DAC initial value
0 (default)

Specify the DAC initial value for internal DAC to generate the voltage on the negative input.

Dependencies

The DAC port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to DAC module
• Specify DAC/RAMP parameter(s) Via is set to Input port

RAMP reference value — Specify RAMP reference value
0 (default)

The RAMP reference value is in the range 0 to 65535. Any value outside the range is saturated.

The RAMP generator starts to decrement from the reference value.

Dependencies

The REF port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Dialog
• This port is available only for the COMPH module.

RAMP decrement value — Specify RAMP decrement value
0 (default)

The RAMP decrement value is in range 0 to 65535. Any value outside the range is saturated.

The RAMP generator decrements the RAMP reference value in steps of decrement value.

Dependencies

The DEC port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Dialog
• This port is available only for the COMPH module.

2 Blocks

2-78

RAMP delay value — Specify RAMP delay value
0 (default)

The RAMP delay value is in range 0 to 8192. Any value outside the range is saturated.

The RAMP generator waits for the delay value before it starts to decrement the RAMP reference
value in steps of RAMP decrement value.

Dependencies

The DLY port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) via is set to Dialog
• This port is available only for the COMPH module.

RAMP initial reference value — Specify RAMP initial reference value
0 (default)

The RAMP initial reference value is in the range 0 to 65535. Any value outside the range is saturated.

The RAMP generator starts to decrement from the reference value.

Dependencies

The REF port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Input port
• This port is available only for the COMPH module.

RAMP initial decrement value — Specify RAMP decrement value
0 (default)

The RAMP initial decrement value is in range 0 to 65535. Any value outside the range is saturated.

The RAMP generator decrements the RAMP reference value in steps of decrement value.

Dependencies

The DEC port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) Via is set to Input port
• This port is available only for the COMPH module.

RAMP initial delay value — Specify RAMP delay value
0 (default)

The RAMP initial delay value is in range 0 to 8192. Any value outside the range is saturated.

 F2807x/F2837xD/F2837xS/F28004x/F2838x/F28002x/F28003x CMPSS

2-79

The RAMP generator waits for the delay value before it starts to decrement the RAMP reference
value in steps of RAMP decrement value.

Dependencies

The DLY port appears only when parameter:

• Second input is set to Internal DAC
• DAC source select is set to RAMP module
• Specify DAC/RAMP parameter(s) via is set to Input port
• This port is available only for the COMPH module.

Enable latch output — Comparator latch output
off (default) | on

The latched value of the digital filter output of the comparator.

Select this parameter to enable the LTH port.

Enable latch clear — Clear comparator latch value
off (default) | on

Latch clear signals to clear the comparator latch status signal. Any value greater than 0 will clear the
latch signal.

Select this parameter to enable the LCLR port.

Sample time — Frequency at which data is read from comparator
0.1 (default)

Use this parameter to specify the time interval between samples. To inherit sample time from an
upstream block, set this parameter to -1.

Version History
Introduced in R2020a

2 Blocks

2-80

F2838x-M4 UDP Send
Send UDP packets to UDP host

Libraries:
C2000 Microcontroller Blockset F2838x / M4

Description
The UDP Send block sends UDP packets to a UDP host. Use the block for stateless and connectionless
data transmission.

The block sends packets from the port number specified in the Local IP Port (-1 for automatic
port assignment) parameter. The IP address and the port number of the receiving host are specified
in the Remote IP address (255.255.255.255 for broadcast) and Remote IP Port parameters.

You can choose to send UDP packets in the blocking or nonblocking mode.

Note

• Your antivirus software or firewall might block UDP traffic. Configure the software to allow traffic
from a specific IP port number.

• Due to RAM memory limitations on the F2838x(ARM Cortex-M4), loading application to RAM is
not supported for this block.

• CPU Timer 2 of F2838x Arm Cortex-M core (Connectivity Manager) provides time base to lwIP
stack. It is configured to trigger an interrupt every 1 ms. This timer should not be re-configured if
Ethernet blocks are being used in the model. If the corresponding interrupt is armed through
Hardware Interrupt block, it will run the interrupt handler every 1 ms.

Ports
Input

Port_1 — Input data port
vector

The port accepts an array and sends it as UDP packets over an IP network to the receiving UDP host.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Remote IP address (255.255.255.255 for broadcast) — IP address of receiving UDP host
192.168.1.10 (default) | 255.255.255.255

 F2838x-M4 UDP Send

2-81

Specify the IP address or the host name to which the block sends the UDP packets. To broadcast
packets to all the receiving hosts, specify 255.255.255.255.

Remote IP Port — IP port on receiving UDP host
25000 (default) | positive integer in the range [1,65535]

Specify the port number of the application on the receiving host to which you want to send the
packets. Match the remote port number with the local port number of the receiving host.

Local IP Port (-1 for automatic port assignment) — IP port on sending UDP host
-1 (default) |

Specify the port number of the application from which you want to send the packets.

When you specify the default value of -1, the block randomly selects a port from the available ports
to send the data. If the receiving host expects UDP packets from a particular port number, specify the
number of that port.

Wait until previous packet transmitted — Wait to sent new packets
off (default) | on

• on — When you select this parameter, the send operation runs in the blocking mode. In this mode,
if the block is still transmitting the packets received in the previous time step, the block retains
the data at the input port in the current time step and waits to send it.

A task overrun occurs if the target hardware is still waiting for the requested data to be sent when
the next send operation is scheduled to begin. To fix overruns increase the time step by using the
Sample time parameter.

• off — When you clear this parameter, the send operation runs in the nonblocking mode. In this
mode, if the block is still transmitting the packets received in the previous time step, the data at
the input port in the current time step is dropped.

In either mode, if the block is yet to establish the connection between the sending and receiving
hosts. or if the connection is lost, the data at the input port is dropped.

Version History
Introduced in R2020b

See Also
F2838x-M4 UDP Receive

2 Blocks

2-82

F2838x-M4 UDP Receive
Receive UDP packets from UDP host

Libraries:
C2000 Microcontroller Blockset / / F2838x / M4

Description
The UDP Receive block receives UDP packets from a UDP host. Use the block for stateless and
connectionless data exchange.

With each sample, the block outputs the contents of a UDP packet as a data vector of the size
specified in the Data size (N) parameter.

The block receives the packets on the port number specified in the Local IP Port parameter from the
IP address specified in the Remote IP address (0.0.0.0 for accepting all) parameter.

You can choose to receive the UDP packets in the blocking or nonblocking mode.

Note

• Your antivirus software or firewall might block UDP traffic. Configure the software to allow traffic
from a specific IP port number.

• Due to RAM memory limitations on the F2838x(ARM Cortex-M4), loading application to RAM is
not supported for this block.

• CPU Timer 2 of F2838x Arm Cortex-M core (Connectivity Manager) provides time base to lwIP
stack. It is configured to trigger an interrupt every 1 ms. This timer should not be re-configured if
Ethernet blocks are being used in the model. If the corresponding interrupt is armed through
Hardware Interrupt block, it will run the interrupt handler every 1 ms.

Input/Output Ports
Output

Data — UDP packets received from sending UDP host
vector

At each sample time, the port outputs the contents of a packet received as a data vector of the size
specified in the Data size (N) parameter.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Status — Determine if requested data is received at the given time step
scalar

 F2838x-M4 UDP Receive

2-83

The port outputs 0 (success) when the received number of data elements is less than or equal to Data
size (N) specified in the block. Otherwise, it outputs a nonzero value, indicating that no new data is
available.
Data Types: uint8

Parameters
Local IP Port — IP port on the receiving UDP host
25000 (default) | positive integer in the range [1,65535]

Specify the port number of the application from which you want to receive the packets. Match the
local port number with the remote port number of the sending host.

Remote IP address (0.0.0.0 for accepting all) — IP address from which the block receives UDP
packets
192.1.168.10 (default) | 0.0.0.0

Specify the IP address of the remote host from which the block receives packets. To receive packets
from all the sending hosts, specify 0.0.0.0.

Data type — Data type of elements in UDP packets
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Select the data type of the elements in the UDP packets received by the block. The size of each
element depends on its data type.

Data size (N) — Number of data elements in each UDP packet
1 (default)

Specify the number of elements that you want to receive in each packet.

Ensure the following conditions are considered when data is sent to UDP Receive in the target to
avoid data loss.

Note

• The UDP block can handle the maximum packet size (datagram size) of 1472 bytes. Ensure the
packet size sent to the target is less than or equal to 1472 bytes.

• Ensure the size of the data sent to the target is less than or equal the packet size (datagram size).

Wait until data received — Wait until requested data is available
on (default) | off

• on — When you select this parameter, the read operation runs in the blocking mode. The read
operation is blocked when the block is waiting for the requested data. If data is available, the
block outputs the data. If data is not available, the block waits for the data.

A task overrun occurs if the target hardware is still waiting for the data when the next read
operation begins.

To fix overruns, increase the time step by using the Sample time parameter.

2 Blocks

2-84

• off — When you clear this parameter, the read operation runs in the nonblocking mode. When
reading data, if data is not available, the block contains the packet received in the previous time
step. In this mode, the block does not wait for the requested data to be available.

Sample time — How often this block reads packets from the sending UDP host
0.1 (default)

Specify how often the block should read the port buffer. Enter a value greater than 0 or -1 (for
inherited sample time).

This value defaults to a sample time of 0.1 seconds. Smaller values require the processor to
complete the same number of instructions in less time, and this can cause task overruns.

Version History
Introduced in R2020b

See Also
F2838x-M4 UDP Send on page 2-81

 F2838x-M4 UDP Receive

2-85

F2838x-M4 Hardware Interrupt
Trigger downstream function-call subsystem from interrupt service routine

Libraries:
C2000 Microcontroller Blockset F2838x / M4

Description
Use the F2838x-M4 Hardware Interrupt block to create an interrupt service routine (ISR)
automatically in the generated code of your model. The ISR executes the downstream function-call
subsystem associated with the block.

Using this block you can:

• Create ISRs on TI C2000 ARM Cortex-M4.
• Set ISR priority.
• Enable or disable interrupt preemption.
• Simulate the trigger of the interrupt and the downstream subsystem using a simulation input.

This block generates code only for the specified ISR. To change the configuration to enable the
interrupt and specific triggering options use the settings of the chosen peripheral.

For example, to create an ISR for the UART peripheral on the Hardware Interrupt block, select UART
in the Interrupt group parameter and UART0INT_Handler in the Interrupt name parameter. To
create an ISR on the UART Transmit and the UART Receive blocks, set the Interrupt name
parameter to UART0INT_Handler.

To trigger an ISR from a UART Transmit block, select the Enable Transmit Interrupt check box in
Configuration Parameters > Hardware Implementation > Target Hardware Resources >
UART. Selecting this check box has no effect if your model does not have a UART Transmit block.

An ISR from a UART Receive block is automatically triggered when you choose the necessary
Hardware Interrupt block settings because the Enable Receive Interrupt check box is selected by
default in Configuration Parameters > Hardware Implementation > Target Hardware
Resources > UART.

Note Use MCAN Interrupt Status block inside the interrupt function call subsystem to clear the
source of interrupt.

Input/Output Ports
Input

SimIRQ — Simulation interrupt input port
scalar

2 Blocks

2-86

The interrupt block initiates a function call in simulation when you enable the SimIRQ input port.
However, SimIRQ is ignored in the generated code.

Dependencies

To enable the SimIRQ port, select the Add simulation input port parameter.
Data Types: Boolean

Output

IRQ — Generate interrupt request
Scalar

The output of this block is a function call. The size of the function call line equals the number of
interrupts the block is set to handle.

Parameters
Interrupt group — Select an interrupt group
Cortex-M Exceptions (default) | MCANSS | ECAT | DCAN | EMAC | UART | SSI | I2C | USB | DMA | DMA
| IPC | FMC | AES | Timer | Errors

Interrupt group lists all the interrupt groups from your interrupt description file. Selecting an
interrupt group changes the list of values in the Interrupt name parameter.

Interrupt name — Select ISR
NMI_Handler (default) | HardFault_Handler | …

The Interrupt name corresponds to the specific entry in the processor's interrupt vector table. The
available ISRs depend on the interrupt group

Interrupt number — Read only parameter
-14 (default) | 0 | 5 | …

This read-only parameter indicates the position of the selected ISR in the interrupt vector table of
your target hardware.

Simulink task priority — Set priority of downstream function call
30 (default) | positive integer or nonnegative integer

The value you specify in this parameter sets the priority of the downstream function-call subsystem.
The simulink task priority of the selected (ISR) is relative to the model base rate priority.

Note The default model base sample rate priority is set to 40 with a lower priority value indicating a
higher priority task. To achieve this the Higher priority value indicates higher task priority
option is disabled in the Solver pane in the Configuration Parameters.

Disable interrupt pre-emption — Select to disable interrupt preemption
off (default) | on

By default, an interrupt can be preempted by a higher priority interrupt. Selecting this option allows
low priority interrupts to complete their execution without being preempted by other interrupts.

 F2838x-M4 Hardware Interrupt

2-87

Add simulation input port — Select to enable input port
off (default) | on

Select this option to enable the SimIRQ input. The Interrupt block initiates a function call in
simulation when you enable the SimIRQ input port. However, SimIRQ is ignored in the generated
code.

Version History
Introduced in R2020b

2 Blocks

2-88

F2807x/F2837xD/F2837xS/F28004x/F28003x/
F2838x SDFM
Configure filter channel for SDFM Module

Libraries:
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
The sigma delta filter module (SDFM) is a four-channel digital filter designed specifically for current
measurement and resolver position decoding in motor control applications. Each input channel can
receive an independent delta-sigma (ΔΣ) modulator bit stream. The bit streams are processed by four
individually-programmable digital decimation filters.

The filter set includes a fast comparator (secondary filter) for immediate digital threshold
comparisons for over-current and under-current monitoring and a primary data filter.

Each SDFM module consists of:

• Four independent configurable primary filter (data filter) units.
• Four independent, configurable secondary filter (comparator) units.
• Eight external pins (four sigma-delta data input pins and four sigma-delta clock input pins).
• Four different configurable modulator clock modes.

For more information on configuring filter channels, refer to SDFM Configuration Parameters on page
1-185.

Ports
Output

DFSTS — Data filter status
0 | 1 | -1

Status of the data filter returned as one of the following:

• 0 - Data filter not ready
• 1 - Data filter ready
• -1 - Modulator clock failure

DFLTX — Data filter
scalar

 F2807x/F2837xD/F2837xS/F28004x/F28003x/F2838x SDFM

2-89

The primary filter data output. It is represented in either a 32-bit or a 16-bit format.

DFLTX - x represents the filter channel.

CFSTS — Comparator Status
0 | 1 | 2 | 3 | 4 | 5 | -1

The comparator status value differs for different processors.

The comparator status value

Comp Status Values F2837x/07 F28004x F2838x
0 No comparator event

occurred
No comparator event
occurred

No comparator event
occurred

1 Lower threshold event
(LLT)

Lower threshold event
(LLT)

No HLTZ

Comparator event 1
(CEVT1).

No HLTZ
2 Higher threshold event

(HLT)
Higher threshold event
(HLT)

No HLTZ

Comparator event 2
(CEVT2).

No HLTZ
3 NA HLTZ. No HLT and no

LLT
HLTZ. No CEVT1 and no
CEVT2

4 NA HLTZ and LLT CEVT1 and HLTZ
5 NA HLTZ and HLT CEVT2 and HLTZ
-1 Modulator clock failure Modulator clock failure Modulator clock failure

Dependencies

To enable this port, select the Enable comparator filter output parameter.

CFLTX — Comparator filter
scalar

The secondary data filter output. CFLTX - x represents the filter channel.

This comparator filter is available only for specific processors.

Dependencies

To enable this port, select the Enable comparator filter output parameter.

Parameters
SDFM module — Indicates which register to use
1 (default) | 2

Select the SDFM register that should be configured to output the result.

Note The F28004x processor has only one SDFM module.

2 Blocks

2-90

Filter channel — Select filter module
Filter1 (default) | Filter2 | Filter3 | Filter4

Each filter channel consists of an input control unit, a data filter unit, and a comparator filter unit.
Each of these filter modules can be independently configured. The SDFM module consists of four
primary filters and four secondary filters.

Data representation — Source of internal DAC
16-bit (default) | 32-bit

The data filter output can be represented in either 32-bit or 16-bit format.

By default, the data filter output is represented in a 16-bit format. When the output is represented in
a 16-bit format, required shifts are handled internally.

Sample time — Frequency at which data is read
0.1 (default)

Use this parameter to specify the time interval between samples. To inherit sample time from an
upstream block, set this parameter to -1.

Enable comparator filter output — Enables comparator output ports
off (default) | on

Select this option to enable the comparator status (CFSTS) and comparator filter (CFLTX) output
ports.

Version History
Introduced in R2020b

See Also
“Using Sigma Delta Filter Module (SDFM) to Measure the Analog Input Signal”

 F2807x/F2837xD/F2837xS/F28004x/F28003x/F2838x SDFM

2-91

F2838x-M4 TCP Receive
Receive data over TCP/IP network from remote host

Libraries:
C2000 Microcontroller Blockset F2838x / M4

Description
The TCP Receive block receives data from a remote host or other target hardware over a network.
The server(client mode) must be up and running before deploying the model that contains the TCP
Receive block to the target.

The block outputs data either in blocking mode or in non-blocking mode. In blocking mode, the model
blocks the execution while it waits for the requested data to be available. In non-blocking mode, the
model runs continuously. To set the block in blocking mode, select the Wait until data received
option.

At each time step, the Data port outputs data as a vector of the size specified in the Data size (N)
parameter. The Status port outputs 0 or a nonzero value indicating whether new data is received. 0
at the Status port indicates that a valid data is received.

Note

• Your antivirus software or firewall might block TCP traffic. Configure the software to allow traffic
from a specific IP port number.

• Due to RAM memory limitations on the F2838x(ARM Cortex-M4), loading application to RAM is
not supported for this block.

• CPU Timer 2 of F2838x Arm Cortex-M core (Connectivity Manager) provides time base to lwIP
stack. It is configured to trigger an interrupt every 1 ms. This timer should not be re-configured if
Ethernet blocks are being used in the model. If the corresponding interrupt is armed through
Hardware Interrupt block, it will run the interrupt handler every 1 ms.

Input/Output Ports
Output

Data — Output data
vector

At each time step, the port outputs data as a vector of the size specified in the Data size (N)
parameter.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

2 Blocks

2-92

Status — Requested data received at given time step
scalar

The port outputs 0 if the data is received at a given time step. Otherwise, it outputs a nonzero value,
indicating that no new data is available.
Data Types: uint8

Parameters
Connection mode — Set the block as server or client
Server (default) | Client

Set the block as TCP/IP server or client.

When you set connection mode parameter to Server, provide a Local IP Port. The local port acts as
the listening port on the TCP/IP server.

When you set connection mode parameter to Client, provide the Server IP Address and the Server
IP Port of the TCP/IP server from which you want to receive the data.

Local IP Port — IP port on receiving host from which data is received
25000 (default) | positive integer in the range [1,65535]

This local port number acts as a listening port on the TCP/IP server. Match the local port number with
the remote port number of the sending host.

Server IP Address — Remote IP address of server from which data is received
192.168.1.10 (default) | any valid IP address

Specify the IP address of the sending server from which the data is received.

Dependencies

This parameter appears only when Connection mode parameter is set to Client.

Server IP Port — Remote IP port on server from which data is received
25002 (default) | positive integer in the range [1,65535]

Specify port number on the sending server from which data is received.

Dependencies

This parameter appears only when Connection mode is set to Client.

Data type — Data type of received data
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Select the data type of the elements in the TCP data received by the block. The size of each element
depends on its data type.

Data size (N) — Number of data bytes in received data
1 (default) | positive integer

Specify number of data bytes to receive at each time step.

 F2838x-M4 TCP Receive

2-93

Wait until data received — Wait until requested data is available
on (default) | off

• on — When you select this parameter, the read operation runs in the blocking mode. The read
operation is blocked when the block is waiting for the requested data. If data is available, the
block outputs the data. If data is not available, the block waits for the data.

A task overrun occurs if the target hardware is still waiting for the data when the next read
operation begins.

To fix overruns, increase the time step by using the Sample time parameter.
• off — When you clear this parameter, the read operation runs in the nonblocking mode. When

reading data, if data is not available, the block contains the packet received in the previous time
step (the block outputs 0). In this mode, the block does not wait for the requested data to be
available.

Sample time — Interval at which block reads data from sending host
0.1 (default) | nonnegative value

Specify how often the block should read the port buffer. Enter a value greater than 0 or -1 (for
inherited sample time).

This value defaults to a sample time of 0.1 seconds. Smaller values require the processor to
complete the same number of instructions in less time, and this can cause task overruns.

Version History
Introduced in R2020b

See Also
F2838x-M4 TCP Send

2 Blocks

2-94

F2838x-M4 TCP Send
Send data over TCP/IP network to remote host

Libraries:
C2000 Microcontroller Blockset F2838x / M4

Description
The TCP Send block sends data to a remote host or another hardware board over a TCP/IP network.
The server (client mode) must be up and running before deploying the model that contains the TCP
Send block to the target.

The block sends data either in blocking mode or in non-blocking mode. In blocking mode, the model
blocks the execution while it waits for the data to be sent completely. In non-blocking mode, the
model runs continuously. To set the block in blocking mode, select the Wait until previous packet
transmitted option.

Note

• Your antivirus software or firewall might block TCP traffic. Configure the software to allow traffic
from a specific IP port number.

• Due to RAM memory limitations on the F2838x(ARM Cortex-M4), loading application to RAM is
not supported for this block.

• CPU Timer 2 of F2838x Arm Cortex-M core (Connectivity Manager) provides time base to lwIP
stack. It is configured to trigger an interrupt every 1 ms. This timer should not be re-configured if
Ethernet blocks are being used in the model. If the corresponding interrupt is armed through
Hardware Interrupt block, it will run the interrupt handler every 1 ms.

Input/Output Ports
Input

Port_1 — Input data
vector

The block accepts data specified as an N-by-1 array. The block sends this data over a TCP/IP network
to the receiving host.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Output

Status — Data transmitted at given time step
scalar

 F2838x-M4 TCP Send

2-95

The port outputs 0 if the data is transmitted at a given time step. Otherwise, it outputs a nonzero
value, indicating that data transmission is not successful.

Dependencies

This parameter appears only when Output transmit status parameter is enabled.
Data Types: uint8

Parameters
Connection mode — Set the block as server or client
Server (default) | Client

Set the block as a TCP/IP server or client.

When you set connection mode parameter to Server, provide a Local IP Port. The local port acts as
the listening port on the TCP/IP server.

When you set connection mode parameter to Client, provide the Server IP Address and the Server
IP Port of the TCP/IP server to which you want to send the data.

Server IP Address — Remote IP address of server to which to send data is sent
192.168.1.10 (default) | any valid IP address

Specify the remote IP address of the receiving server to which the data is sent.

Dependencies

This parameter appears only when Connection mode parameter is set to Client.

Server IP Port — Remote IP port on server to which data is sent
25002 (default) | positive integer in the range [1,65535]

Specify the port number on the receiving server to which data is sent.

Dependencies

This parameter appears only when Connection mode parameter is set to Client.

Local IP Port — IP port on sending host from which to send data
25000 (default) | positive integer in the range [1,65535]

Specify the port number of the application from which to send the data. This local port acts as the
listening port of the TCP/IP server.

Wait until previous packet transmitted — Wait until data received in previous time step is sent
off (default) | on

• on — When you select this parameter, the send operation runs in the blocking mode. In this mode,
if the block is still transmitting the packets received in the previous time step, the block retains
the data at the input port in the current time step and waits to send it.

A task overrun occurs if the target hardware is still waiting for the requested data to be sent when
the next send operation is scheduled to begin. To fix overruns increase the time step by using the
Sample time parameter.

2 Blocks

2-96

• off — When you clear this parameter, the send operation runs in the nonblocking mode. In this
mode, if the block is still transmitting the packets received in the previous time step, the data at
the input port in the current time step is dropped.

In either mode, if the block is yet to establish the connection between the sending and receiving
hosts. or if the connection is lost, the data at the input port is dropped.

Output transmit status — Option to display the transmit status during data transmission
off (default) | on

Select this option to display the transmit status during data transmission.

When you select the Output transmit status parameter, the block configures an output port. The port
on the block is labeled as Status, indicating that the block outputs the status of the transmit
operation at the output port.

Version History
Introduced in R2020b

See Also
F2838x-M4 TCP Receive

 F2838x-M4 TCP Send

2-97

F2838x-M4 MCAN Receive
Read data from CAN bus

Libraries:
C2000 Microcontroller Blockset / F2838x / M4

Description
The MCAN Receive block reads messages from a Controller Area Network (CAN) connected to the
hardware.

In the Unpacked mode, the block outputs different fields of unpacked CAN Messages.

In the Packed mode, the block outputs a Simulink bus signal. To extract data from the Simulink bus
signal, connect it to a CAN-FD Unpack block.

The MCAN Receive block receives messages from the CAN and delivers them to the Simulink model.
It outputs one message or all messages at each time step, depending on the block parameters. The
MCAN Receive block stores CAN messages received from the bus in a first-in, first-out (FIFO) or
buffer. The FIFO or buffer delivers the messages to your model in the queued order at every time
step.

Note

• For MCAN Receive block, if the data is not available, the output status shows the previously
received data.

• When the Output type is packed and MCAN Receive block is connected to CAN FD Unpack block,
the values of the error, error state indicator (ESI), reserved, and timestamp fields of
the received message are set to 0 and these values are reflected on the output of CAN FD Unpack
block.

In receive output status we should mention the current behavior when data is not available. The
output data will be retained to its previously received value in case of data is not available.

The number of elements to be stored in FIFO is configured in configuration parameters. In case of
buffers, the new data will not be stored unless the old data is read.

The FIFO, blocking or overwrite mode settings are configured in the MCAN.

Specify the Output type and its properties using the block parameters dialog box. Configure
additional properties of the CAN module in the Configuration Parameters. For more refer to “Model
Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-40.

2 Blocks

2-98

Ports
Output

Msg — CAN Message
vector | scalar

The MCAN Receive block outputs the received CAN message (data and header) the Simulink bus
signal. The CAN message received from the bus will be stored in a FIFO or buffer.

Dependencies

To enable this port, set Output type to Packed.
Data Types: CAN Msg

Data — Message data
vector | scalar

The block outputs data from the received CAN message. The maximum size of the data is 64 of
uint8 format.

Dependencies

To enable this port, set Output type to Unpacked.
Data Types: uint8

Status — Status of received message
scalar

The port outputs the message read status. The block outputs the status as 0 if it reads new message
and 1 if it does not.

Dependencies

To enable this port select the Output Status parameter.
Data Types: uint8

CAN identifier(ID) — CAN message identifier
scalar

The port outputs a standard or extended from the received CAN message.

Dependencies

To enable this port, set Output type to Unpacked.
Data Types: uint32

Length(LEN) — CAN message length
scalar

The port outputs the length of the received CAN message in bytes.

Dependencies

To enable this port, set Output type to Unpacked.

 F2838x-M4 MCAN Receive

2-99

Data Types: uint8

Remote transmission request(RTR) — Remote frame status
scalar

The port outputs the remote transmission status as one of these values.

• 1 - if the received CAN message is a remote frame
• 0 - if the received CAN message is a data frame

Dependencies

To enable this port, set Output type to Unpacked.
Data Types: uint8

Bit rate switch(BRS) — Bit rate switch status
scalar

The port outputs:

• 0 - when CAN FD frames are transmitted without bit rate switching
• 1 - when CAN FD frames are transmitted with bit rate switching

Dependencies

To enable this port, set Output type to Unpacked.
Data Types: uint8

Extended identifier(XTD) — Extended or standard identifier
scalar

The port outputs:

• 0 - if its 11-bit standard identifier
• 1 - if its 29-bit extended identifier

Dependencies

To enable this port, set Output type to Unpacked.
Data Types: uint8

Frame data format(FDF) — CAN frame data format
scalar

The port outputs the CAN frame data format as:

• 0 - Classic CAN
• 1 - CAN-FD

Dependencies

To enable this port, set Output type to Unpacked.
Data Types: uint8

2 Blocks

2-100

Parameters
Read source — CAN receive message source
Buffers (default) | FIFO 0 | FIFO 1

The CAN message received from the bus will be stored in FIFO or buffer.

The MCAN Receive block stores the message in a FIFO0, FIFO1 or buffer depending on the filter
configuration you set in the hardware configuration parameters.

Buffer number (0-63) — Buffer number
0 (default) | 1 | 2...

Specify the number of the buffer in which you want the MCAN Receive block to store the received
CAN message.

Dependencies

To enable this parameter, set Read source to Buffers.

Output Type — Message output type
Packed (default) | Unpacked

The output type of the MCAN Receive block is either Packed or Unpacked.

In the Unpacked mode, the block outputs the different fields of unpacked CAN message. In the
unpacked mode, the MCAN Receive block has 7 (ID, XTD, FDF, BRS, LEN, RTR, Data)
output ports.

In the Packed mode, the block outputs a Simulink bus signal. To extract data from Simulink bus
signal, connect it to the CAN-FD Unpack block.

Output Status — Enable output status
off (default) | on

When you select the Output Status parameter, the block configures the Status output port. The port
outputs the read status.

Sample Time — Time interval to read message
0.1 (default) | -1 | nonnegative real value

Specify how often the block receives message, in seconds. When you specify this parameter as -1,
Simulink determines the best sample time for the block based on the block context within the model.

Version History
Introduced in R2021a

See Also
F2838x-M4 MCAN Transmit | “Model Configuration Parameters for Texas Instruments F2838x (ARM
Cortex-M4)” on page 1-40

 F2838x-M4 MCAN Receive

2-101

F2838x-M4 MCAN Transmit
Send serial data to CAN bus

Libraries:
C2000 Microcontroller Blockset / F2838x / M4

Description
The MCAN Transmit block sends messages to a Controller Area Network (CAN) connected to the
hardware.

In the Raw data mode, the block accepts a 1-D array of type uint8. In the CAN msg mode, the block
accepts a Simulink bus signal from CAN-FD Pack block.

Note In MCAN Transmit block, if the transmit FIFO is full, then the data is not transmitted.

Specify the Data Format and its properties using the block parameters dialog box. Configure the
properties of CAN module in the Configuration Parameters. For more refer to “Model Configuration
Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-40.

Ports
Input

TX — Input data port
vector | scalar

The block accepts messages in the Raw data or CAN Msg format.

• Raw data – To accept the message as a uint8 vector array, set the Data format as Raw data.
• CAN Msg – To accept the message in CAN message format, set the Data format as CAN Msg. You

can create your messages using the CAN FD Pack block.

Data Types: uint8 | CAN Msg

Output

Status — Status of CAN message transmission
scalar

Output port to display the CAN message transmission status. The status port outputs:

• 0 - When CAN message is added to transmit FIFO/Queue
• 1 - When CAN message is not added to transmit to FIFO/Queue

2 Blocks

2-102

Dependencies

To enable this port, select the Output Status parameter.

Parameters
Data format — Data output type
Raw data (default) | CAN Msg

Select a type to the write message to transmit FIFO or queue. This message is later transmitted to
CAN network connected to hardware.

• Raw data – To write message as a 1-by-N uint8 array, select Data Format as Raw data.
• CAN Msg – To write message in CAN message format, select Data Format as CAN Msg and then

perform these steps:

1 Add a CAN FD Pack block from C2000 Microcontroller Blockset/Target Communication library
to your model.

2 Connect the output of the CAN FD Pack block to the input of the MCAN Transmit block
3 Using the options in the Data to be input as list of the CAN Pack block, specify if you want

to create your messages or you want to upload a CAN database file. If you choose to upload a
CAN database file, the CAN FD Pack block inherits the message properties from the uploaded
file.

Frame format — Frame format type
CAN-FD (default) | Classic CAN

The CAN frame format.

Dependencies

To enable this parameter, set Data Format to Raw data.

Identifier Type — Message identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

The CAN message identifier type.

Dependencies

To enable this parameter, set Data Format to Raw data.

Identifier — Message identifier
100 (default) | numeric identifier of length 11 or 29 bits

Identifier, which is 11 bits long for the standard frame size or 29 bits long for the extended frame
size, specified in decimal, binary, or hex format. For binary and hex formats, use bin2dec(' ') and
hex2dec(' '), respectively, to convert the entry. The identifier is used to create CAN message
transmitted to the CAN bus.

Dependencies

To enable this parameter, set Data Format to Raw data.

 F2838x-M4 MCAN Transmit

2-103

Length (bytes) — Length of message
64 (default) | positive integer less than or equal to 64(CAN-FD) | positive integer
less than or equal to 8(Classic CAN)

The length in bytes of data in the CAN message.

The length of message for the Classic CAN frame format is between 0-8 bytes, and for the CAN-FD
frame format the range is between 0-64. The blocks displays an error when there is mismatch
between the length of data at transmission port and the length you specify here.

Dependencies

To enable this parameter, set Data Format to Raw data.

Remote Frame — Enable remote message
off (default) | on

Select this parameter to configure the CAN message as a remote message. The data at the input port
is not considered for transmission.

Dependencies

To enable this parameter, set Data format to Raw data and Frame format to Classic CAN.

Enable bit rate switching — Enable bit rate switch message
off (default) | on

Select this parameter to configure the CAN message as a bit rate switch. The data in the CAN
message will be transmitted at the data rate you specify in the hardware configuration parameter.

Dependencies

To enable this parameter, set Data format to Raw data and Frame format to CAN-FD.

Output Status — Enable output status
off (default) | on

When you select the Output Status parameter, the block configures the Status of the port. The port
outputs CAN message transmission status.

Version History
Introduced in R2021a

See Also
F2838x-M4 MCAN Receive | “Model Configuration Parameters for Texas Instruments F2838x (ARM
Cortex-M4)” on page 1-40

2 Blocks

2-104

F2838x-M4 MCAN Interrupt Status
Output specific bits of MCAN interrupt register or entire register

Libraries:
C2000 Microcontroller Blockset / F2838x / M4

Description
The MCAN Interrupt Status block outputs specific bits of MCAN_IR register or the entire MCAN_IR
register. The register values are cleared after reading the specific bits or entire MCAN_IR register.

Select the MCAN interrupt register output parameter to output the entire MCAN interrupt
register.

If MCAN interrupt register output parameter is not selected then the block outputs specific
bits from MCAN_IR register based on the selection from Transmit sources, Receive sources
and General sources.

Configure Receive, Transmit and other interrupt sources in configuration parameters. For more,
“Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)” on page 1-40.

Ports
Output

MCAN_IR — Status of MCAN interrupt register
uint32

Output port to display entire MCAN_IR register status as uint32 value.

The flags are set when one of the listed conditions is detected (edge-sensitive). The flags remain set
until the host clears them. A flag is cleared by writing a 1 to the corresponding bit position. Writing a
0 has no effect. A hard reset will clear the register.

MCAN_IR Register

B
it

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

T
y
p
e

R
F
0
N

R
F
0
W

R
F
0
F

R
F
0
L

R
F
1
N

R
F
1
W

R
F
1
F

R
F
1
L

H
P
M

T
C

T
C
F

T
F
E

T
E
F
N

T
E
F
W

T
E
F
F

T
E
F
L

T
S
W

M
R
A
F

T
O
O

D
R
X

R
E
S
E
R
V
E
D

B
E
U

E
L
O

E
P

E
W

B
O

W
D
I

P
E
A

P
E
D

A
R
A

R
E
S
E
R
V
E
D

R
E
S
E
R
V
E
D

 F2838x-M4 MCAN Interrupt Status

2-105

Dependencies

To enable this port, select the MCAN interrupt register output parameter.

TEFN — Status of TX event FIFO new entry
boolean

Output port to display the transmit (TX) event first in, first out (FIFO) new entry status. The status
port outputs:

• 0 - TX event FIFO unchanged
• 1 - TX handler wrote TX event FIFO element

Dependencies

To enable this port, select the TX event FIFO new element parameter.

TEFW — Status of TX event FIFO watermark reached
boolean

Output port to display the TX event FIFO watermark reached status. Once the status is cleared and
the FIFO level is still above the watermark level, then the bit is not enabled. The bit is enabled only
while going from low to high. The status port outputs:

• 0 - TX event FIFO fill level below watermark
• 1 - TX event FIFO fill level reached watermark

Dependencies

To enable this port, select the TX event FIFO watermark parameter.

TEFF — Status of TX event FIFO full
boolean

Output port to display the TX event FIFO full status. The status port outputs:

• 0 - TX event FIFO not full
• 1 - TX event FIFO full

Dependencies

To enable this port, select the TX event FIFO full parameter.

TEFL — Status of TX event FIFO element lost
boolean

Output port to display the TX event FIFO element lost status. The status port outputs:

• 0 - No TX Event FIFO element lost
• 1 - TX event FIFO element lost, also set after write attempt to TX event FIFO of size zero

Dependencies

To enable this port, select the TX event FIFO element lost parameter.

2 Blocks

2-106

TC — Status of transmission completed
boolean

Output port to display the transmission completed status. The status port outputs:

• 0 - No transmission completed
• 1 - Transmission completed

Dependencies

To enable this port, select the Transmission complete parameter.

TCF — Status of transmission cancellation finished
boolean

Output port to display the transmission cancellation finished status. The status port outputs:

• 0 - No transmission cancellation finished
• 1 - Transmission cancellation finished

Dependencies

To enable this port, select the Transmission cancellation finished parameter.

TFE — Status of transmission FIFO empty
boolean

Output port to display the transmission FIFO empty status. The status port outputs:

• 0 - TX FIFO non-empty
• 1 - TX FIFO empty

Dependencies

To enable this port, select the TX FIFO empty parameter.

HPM — Status of high priority message
boolean

Output port to display the high priority message status. The status port outputs:

• 0 - No high priority message received
• 1 - High priority message received

Dependencies

To enable this port, select the High priority message parameter.

RF0N — Status of RX FIFO 0 new message
boolean

Output port to display the receive (RX) FIFO 0 new message status. The status port outputs:

• 0 - No new message written to RX FIFO 0
• 1 - New message written to RX FIFO 0

 F2838x-M4 MCAN Interrupt Status

2-107

Dependencies

To enable this port, select the RX FIFO 0 new message parameter.

RF0W — Status of RX FIFO 0 watermark reached
boolean

Output port to display the receive (RX) FIFO 0 watermark reached status. Once the status is cleared
and the FIFO level is still above the watermark level, then the bit is not enabled. The bit is enabled
only while going from low to high. The status port outputs:

• 0 - RX FIFO 0 fill level below watermark
• 1 - RX FIFO 0 fill level reached watermark

Dependencies

To enable this port, select the RX FIFO 0 watermark parameter.

RF0FL — Status of RX FIFO 0 full
boolean

Output port to display the receive (RX) FIFO 0 full status. The status port outputs:

• 0 - RX FIFO 0 not full
• 1 - RX FIFO 0 full

Dependencies

To enable this port, select the RX FIFO 0 full parameter.

RF0ML — Status of RX FIFO 0 message lost
boolean

Output port to display the RX FIFO 0 message lost status. The status port outputs:

• 0 - No RX FIFO 0 message lost
• 1 - RX FIFO 0 message lost, also set after write attempt to RX FIFO 0 of size zero

Dependencies

To enable this port, select the RX FIFO 0 message lost parameter.

DRX — Status of dedicated RX buffer message
boolean

Message stored to dedicated RX buffer. The flag is set whenever a received message has been stored
into a dedicated RX Buffer.

The status port outputs:

• 0 - No RX buffer updated
• 1 - At least one received message stored into an RX buffer

Dependencies

To enable this port, select the Dedicated RX buffer message parameter.

2 Blocks

2-108

RF1N — Status of RX FIFO 1 new message
boolean

Output port to display the receive (RX) FIFO 1 new message status. The status port outputs:

• 0 - No new message written to RX FIFO 1
• 1 - New message written to RX FIFO 1

Dependencies

To enable this port, select the RX FIFO 1 new message parameter.

RF1W — Status of RX FIFO 1 watermark reached
boolean

Output port to display the receive (RX) FIFO 1 watermark reached status. Once the status is cleared
and the FIFO level is still above the watermark level, then the bit is not enabled. The bit is enabled
only while going from low to high. The status port outputs:

• 0 - RX FIFO 1 fill level below watermark
• 1 - RX FIFO 1 fill level reached watermark

Dependencies

To enable this port, select the RX FIFO 1 watermark reached parameter.

RF1FL — Status of RX FIFO 1 full
boolean

Output port to display the receive (RX) FIFO 1 full status. The status port outputs:

• 0 - RX FIFO 1 not full
• 1 - RX FIFO 1 full

Dependencies

To enable this port, select the RX FIFO 1 full parameter.

RF1ML — Status of RX FIFO 1 message lost
boolean

Output port to display the RX FIFO 1 message lost status. The status port outputs:

• 0 - No RX FIFO 1 message lost
• 1 - RX FIFO 1 message lost, also set after write attempt to RX FIFO 1 of size zero

Dependencies

To enable this port, select the RX FIFO 1 message lost parameter.

TSW — Status of timestamp wraparound
boolean

Output port to display the timestamp wraparound status. The status port outputs:

 F2838x-M4 MCAN Interrupt Status

2-109

• 0 - No timestamp counter wrap-around
• 1 - Timestamp counter wrapped around

Dependencies

To enable this port, select the Timestamp wraparound parameter.

TOO — Status of timeout occurred
boolean

Output port to display the timeout occurred status. The status port outputs:

• 0 - No timeout
• 1 - Timeout reached

Dependencies

To enable this port, select the Timeout occurred parameter.

ELO — Status of error logging overflow
boolean

Output port to display the error logging overflow status. The status port outputs:

• 0 - CAN error logging counter did not overflow
• 1 - Overflow of CAN error logging counter occurred

Dependencies

To enable this port, select the Error logging overflow parameter.

EW — Status of error warning
boolean

Output port to display the error warning status. The status port outputs:

• 0 - Error warning status unchanged
• 1 - Error warning status changed

Dependencies

To enable this port, select the Warning status parameter.

WD — Status of watchdog event
boolean

Output port to display the watchdog event status. The status port outputs:

• 0 - No message RAM watchdog event occurred
• 1 - Message RAM watchdog event due to missing ready

Dependencies

To enable this port, select the Watchdog event parameter.

2 Blocks

2-110

PED — Status of protocol error in data phase
boolean

Protocol error in data phase (Data Bit Time is used)

Output port to display the protocol error in data phase status. The status port outputs:

• 0 - No protocol error in data phase
• 1 - Protocol error in data phase detected

Dependencies

To enable this port, select the Data protocol error parameter.

MRAF — Status of message RAM access failure
boolean

The flag is set, when the RX Handler:

• Has not completed acceptance filtering or storage of an accepted message until the arbitration
field of the following message has been received. In this case acceptance filtering or message
storage is aborted and the RX Handler starts processing of the following message.

• Was not able to write a message to the Message RAM. In this case message storage is aborted.

In both cases the FIFO put index is not updated respectively. The new data flag for a dedicated RX
Buffer is not set, a partly stored message is overwritten when the next message is stored to this
location.

The flag is set when the Tx Handler could not read a message from the Message RAM in time. In this
case message transmission is aborted. In case of a TX Handler access failure the MCAN is switched
into Restricted Operation Mode.

Output port to display the message RAM access failure status. The status port outputs:

• 0 - No message RAM access failure occurred
• 1 - Message RAM access failure occurred

Dependencies

To enable this port, select the Message RAM access failure parameter.

BEU — Status of bit error uncorrected
boolean

Bit error uncorrected. Message RAM bit error detected, uncorrected. This bit is set when a double bit
error is detected by the ECC aggregator attached to the Message RAM. An uncorrected Message
RAM bit error sets CCCR.INIT to 1. This is done to avoid transmission of corrupted data.

Output port to display the bit error uncorrected status. The status port outputs:

• 0 - No bit error detected when reading from Message RAM
• 1 - Bit error detected, uncorrected (e.g. parity logic)

Dependencies

To enable this port, select the Bit error uncorrected parameter.

 F2838x-M4 MCAN Interrupt Status

2-111

EP — Status of error passive
boolean

Output port to display the error passive status. The status port outputs:

• 0 - Error passive status unchanged
• 1 - Error passive status changed

Dependencies

To enable this port, select the Error passive status parameter.

BO — Status of bus off
boolean

Output port to display the bus off status. The status port outputs:

• 0 - Bus off status unchanged
• 1 - Bus off status changed

Dependencies

To enable this port, select the Bus off status parameter.

PEA — Status of arbitration protocol error
boolean

Protocol error in arbitration phase (Nominal Bit Time is used)

Output port to display the arbitration protocol error status. The status port outputs:

• 0 - No protocol error in arbitration phase
• 1 - Protocol error in arbitration phase detected

Dependencies

To enable this port, select the Arbitration protocol error parameter.

ARA — Status of access to reserved address
boolean

Output port to display the reversed address access status. The status port outputs:

• 0 - No access to reserved address occurred
• 1 - Access to reserved address occurred

Dependencies

To enable this port, select the Reversed address access parameter.

Parameter
MCAN interrupt register output — Enable to output entire MCAN interrupt register
off (default) | on

2 Blocks

2-112

Select this parameter to output the entire MCAN interrupt register.

When you select the MCAN interrupt register output parameter, the block configures an output
port, MCAN_IR. The port outputs the status of MCAN interrupt register output.

If MCAN interrupt register output parameter is not selected then the block outputs specific
bits from MCAN_IR register based on the selection from Transmit sources, Receive sources
and General sources.

Transmit sources

TX event FIFO new element — Enable TX event FIFO new element status
off (default) | on

When you select the TX event FIFO new element parameter, the block configures an output port,
TEFN. The port outputs the status of TX event FIFO new entry.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

TX event FIFO watermark — Enable TX event FIFO watermark status
off (default) | on

When you select the TX event FIFO watermark parameter, the block configures an output port,
TEFW. The port outputs the status of TX event FIFO watermark reached.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

TX event FIFO full — Enable TX event FIFO full status
off (default) | on

When you select the TX event FIFO full parameter, the block configures an output port, TEFF. The
port outputs the status of TX event FIFO full.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

TX event FIFO element lost — Enable TX event FIFO element lost status
off (default) | on

When you select the TX event FIFO element lost parameter, the block configures an output port,
TEFL. The port outputs the status of TX event FIFO element lost.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Transmission complete — Enable transmission complete status
off (default) | on

When you select the Transmission complete parameter, the block configures an output port, TC.
The port outputs the status of transmission completed.

 F2838x-M4 MCAN Interrupt Status

2-113

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Transmission cancellation finished — Enable transmission cancellation finished status
off (default) | on

When you select the Transmission cancellation finished parameter, the block configures an output
port, TCF. The port outputs the status of transmission cancellation finished.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

TX FIFO empty — Enable Transmission FIFO empty status
off (default) | on

When you select the TX FIFO empty parameter, the block configures an output port, TFE. The port
outputs the status of transmission FIFO empty.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Receive sources

High priority message — Enable high priority message status
on (default) | off

When you select the High priority message parameter, the block configures an output port, HPM.
The port outputs the status of high priority message.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 0 new message — Enable RX FIFO 0 new message status
off (default) | on

When you select the RX FIFO 0 new message parameter, the block configures an output port,
RF0N. The port outputs the status of RX FIFO 0 new message.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 0 watermark — Enable RX FIFO 0 watermark reached status
off (default) | on

When you select the RX FIFO 0 watermark parameter, the block configures an output port, RF0W.
The port outputs the status of RX FIFO 0 watermark reached.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 0 full — Enable RX FIFO 0 full status
off (default) | on

2 Blocks

2-114

When you select the RX FIFO 0 full parameter, the block configures an output port, RF0FL. The
port outputs the status of RX FIFO 0 full.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 0 message lost — Enable RX FIFO 0 message lost status
off (default) | on

When you select the RX FIFO 0 full parameter, the block configures an output port, RF0ML. The
port outputs the status of RX FIFO 0 message lost.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Dedicated RX buffer message — Enable dedicated RX buffer message status
off (default) | on

When you select the Dedicated RX buffer message parameter, the block configures an output port,
DRX. The port outputs the status of dedicated RX buffer message.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 1 new message — Enable RX FIFO 1 new message status
off (default) | on

When you select the RX FIFO 1 new message parameter, the block configures an output port,
RF1N. The port outputs the status of dedicated RX FIFO 1 new message.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 1 watermark — Enable RX FIFO 1 watermark reached status
off (default) | on

When you select the RX FIFO 1 watermark parameter, the block configures an output port, RF1W.
The port outputs the status of RX FIFO 1 watermark reached.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 1 full — Enable RX FIFO 1 full status
off (default) | on

When you select the RX FIFO 1 full parameter, the block configures an output port, RF1FL. The
port outputs the status of RX FIFO 1 full.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

RX FIFO 1 message lost — Enable RX FIFO 1 message lost status
off (default) | on

 F2838x-M4 MCAN Interrupt Status

2-115

When you select the RX FIFO 1 message lost parameter, the block configures an output port,
RF1ML. The port outputs the status of RX FIFO 1 message lost.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

General sources

Timestamp wraparound — Enable timestamp wraparound status
off (default) | on

When you select the Timestamp wraparound parameter, the block configures an output port, TSW.
The port outputs the status of timestamp wraparound.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Timeout occurred — Enable timeout occurred status
off (default) | on

When you select the Timeout occurred parameter, the block configures an output port, TOO. The
port outputs the status of timeout occurred.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Error logging overflow — Enable error logging overflow
off (default) | on

When you select the Error logging overflow parameter, the block configures an output port, ELO.
The port outputs the status of error logging overflow.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Warning status — Enable error warning status
off (default) | on

When you select the Warning status parameter, the block configures an output port, EW. The port
outputs the status of error warning.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Watchdog event — Enable watchdog event status
off (default) | on

When you select the Watchdog event parameter, the block configures an output port, WD. The port
outputs the status of watchdog event.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

2 Blocks

2-116

Data protocol error — Enable data protocol error status
off (default) | on

When you select the Data protocol error parameter, the block configures an output port, PED. The
port outputs the status of protocol error in data phase (Data Bit Time is used).
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Message RAM access failure — Enable message RAM access failure status
off (default) | on

When you select the Message RAM access failure parameter, the block configures an output port,
MRAF. The port outputs the status of message RAM access failure.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Bit error uncorrected — Enable bit error uncorrected status
off (default) | on

When you select the Bit error uncorrected parameter, the block configures an output port, BEU.
The port outputs the status of bit error uncorrected.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Error passive status — Enable error passive status
off (default) | on

When you select the Error passive status parameter, the block configures an output port, EP. The
port outputs the status of bit error uncorrected.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Bus off status — Enable bus off status
off (default) | on

When you select the Bus off status parameter, the block configures an output port, BO. The port
outputs the status of bus off status.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Arbitration protocol error — Enable arbitration protocol error status
off (default) | on

When you select the Arbitration protocol error parameter, the block configures an output port,
PEA. The port outputs the status of arbitration protocol error.
Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

 F2838x-M4 MCAN Interrupt Status

2-117

Reversed address access — Enable reversed address access status
off (default) | on

When you select the Reversed address access parameter, the block configures an output port, ARA.
The port outputs the status of access to reserved address.

Dependencies

To enable this parameter, the MCAN interrupt register output parameter must be disabled.

Sample time — Time interval to read message
-1 (default) | 0.1

Specify how often the block receives message, in seconds. When you specify this parameter as -1,
Simulink determines the best sample time for the block based on the block context within the model.

Version History
Introduced in R2021b

See Also
F2838x-M4 MCAN Receive | “Model Configuration Parameters for Texas Instruments F2838x (ARM
Cortex-M4)” on page 1-40

2 Blocks

2-118

F28M35x/F28M36x GPIO Digital Input
Read the logical value of a GPIO pin configured as input

Libraries:
C2000 Microcontroller Blockset F28M35x/ M3
C2000 Microcontroller Blockset F28M36x/ M3

Description
Read the logical value of a configured GPIO pin.

This block configures the general-purpose I/O (GPIO) MUX registers that control the operation of
GPIO shared pins for digital input. Each I/O port has one MUX register that selects peripheral
operation or digital I/O operation (the default). When a pin is configured for digital input, you cannot
use the same pin for digital output or peripheral operation. You can configure the pull-up and the
open-drain options for the individual digital input pins. To configure, go to Configuration
Parameters > Hardware Implementation > Target Hardware Resources and select the
appropriate GPIO group.

Ports
Output

Pin # — GPIO pin status
scalar | vector

The port outputs the status of the digital pin you select in the Pin number parameter.
Data Types: Boolean

Parameters
GPIO port — Port to read GPIO pin status
GPIOA (default) | GPIOBGPIOC…

Select one of GPIO ports to get the GPIO pin status.

Pin number — GPIO pin whose status you want to read
Pin 0 (default) | Pin 1 | Pin 2 | ...

Select the pin number of the GPIO pin whose status you want to read.

Sample time — Frequency at which block reads input pin values
-1 (default) | 0.1

Specify how often the block receives message, in seconds. When you specify this parameter as -1,
Simulink determines the best sample time for the block based on the block context within the model.

 F28M35x/F28M36x GPIO Digital Input

2-119

Version History
Introduced in R2016a

See Also
F28M35x/F28M36x GPIO Digital Output

2 Blocks

2-120

F28M35x/F28M36x GPIO Digital Output
Set the logical value of a GPIO pin configured as output

Libraries:
C2000 Microcontroller Blockset F28M35x/ M3
C2000 Microcontroller Blockset F28M36x/ M3

Description
Set the logical value of the configured GPIO pin.

Configure individual general-purpose input/output (GPIO) pins to operate as digital outputs. When a
pin is configured for digital output, it cannot operate as a digital input or connect to peripheral I/O
signals.

Ports
Input

Pin # — Status of GPIO pin
scalar | vector

Specify a value at this port to set the status of GPIO pin(s).
Data Types: Boolean

Parameters
GPIO port — Port to write GPIO pin status
GPIOA (default) | GPIOBGPIOC…

Select one of GPIO ports to which you want to write the GPIO pin status.

Pin number — GPIO pin to write status
Pin 0 (default) | Pin 1 | Pin 2 | ...

Select the pin number of the GPIO pin whose status you want to write.

Initially set GPIO pin — GPIO pin status during model initialization
on (default) | off

Select this option to set the GPIO pin status during model initialization.

Version History
Introduced in R2016a

 F28M35x/F28M36x GPIO Digital Output

2-121

See Also
F28M35x/F28M36x GPIO Digital Input

2 Blocks

2-122

Hardware Interrupt
Trigger downstream function-call subsystem from interrupt service routine

Libraries:
C2000 Microcontroller Blockset F28M35x/ M3
C2000 Microcontroller Blockset F28M36x/ M3

Description
Use the Hardware Interrupt block to create an interrupt service routine (ISR) automatically in the
generated code of your model. The ISR executes the downstream function-call subsystem associated
with the block.

Using this block you can:

• Create ISRs on TI C2000 Concerto processor.
• Set ISR priority.
• Enable or disable interrupt preemption.
• Simulate the trigger of the interrupt and the downstream subsystem using a simulation input.

This block generates code only for the specified ISR. To change the configuration to enable the
interrupt and specific triggering options use the settings of the chosen peripheral.

For example, to create an ISR for the UART peripheral on the Hardware Interrupt block, select UART
in the Interrupt group parameter and UART0INT_Handler in the Interrupt name parameter. To
create an ISR on the UART Transmit and the UART Receive blocks, set the Interrupt name
parameter to UART0INT_Handler.

To trigger an ISR from a UART Transmit block, select the Enable Transmit Interrupt check box in
Configuration Parameters > Hardware Implementation > Target Hardware Resources >
UART. Selecting this check box has no effect if your model does not have a UART Transmit block.

An ISR from a UART Receive block is automatically triggered when you choose the necessary
Hardware Interrupt block settings because the Enable Receive Interrupt check box is selected by
default in Configuration Parameters > Hardware Implementation > Target Hardware
Resources > UART0.

Input/Output Ports
Input

SimIRQ — Simulation interrupt input port
scalar

The interrupt block initiates a function call in simulation when you enable the SimIRQ input port.
However, SimIRQ is ignored in the generated code.
Dependencies

To enable the SimIRQ port, select the Add simulation input port parameter.

 Hardware Interrupt

2-123

Data Types: Boolean

Output

IRQ — Generate interrupt request
Scalar

The output of this block is a function call. The size of the function call line equals the number of
interrupts the block is set to handle.

Parameters
Interrupt group — Select an interrupt group
Timers (default) | Cortex-M Exceptions | MCANSS | ECAT | DCAN | EMAC | UART | SSI | I2C | USB |
DMA | DMA | IPC | FMC | AES | Errors

Interrupt group lists all the interrupt groups from your interrupt description file. Selecting an
interrupt group changes the list of values in the Interrupt name parameter.

Interrupt name — Select ISR
Timer0a_Handler (default) | NMI_Handler | HardFault_Handler | …

The Interrupt name corresponds to the specific entry in the processor's interrupt vector table. The
available ISRs depend on the interrupt group

Interrupt number — Read only parameter
19 (default) | 0 | 5 | …

This read-only parameter indicates the position of the selected ISR in the interrupt vector table of
your target hardware.

Simulink task priority — Set priority of downstream function call
30 (default) | positive integer or nonnegative integer

The value you specify in this parameter sets the priority of the downstream function-call subsystem.
The simulink task priority of the selected (ISR) is relative to the model base rate priority.

Note The default model base sample rate priority is set to 40 with a lower priority value indicating a
higher priority task. To achieve this the Higher priority value indicates higher task priority
option is disabled in the Solver pane in the Configuration Parameters.

Disable interrupt pre-emption — Select to disable interrupt preemption
off (default) | on

By default, an interrupt can be preempted by a higher priority interrupt. Selecting this option allows
low priority interrupts to complete their execution without being pre-empted by other interrupts.

Add simulation input port — Select to enable input port
off (default) | on

Select this option to enable the SimIRQ input. The Interrupt block initiates a function call in
simulation when you enable the SimIRQ input port. However, SimIRQ is ignored in the generated
code.

2 Blocks

2-124

Version History
Introduced in R2017a

 Hardware Interrupt

2-125

F28M35x/F28M36x UART Transmit
Transmit serial data to the Universal Asynchronous Receiver Transmitter (UART) port

Libraries:
C2000 Microcontroller Blockset F28M35x/ M3
C2000 Microcontroller Blockset F28M36x/ M3

Description
Transmit serial data through the Universal asynchronous Receiver/ Transmitter (UART) port. You can
specify ASCII characters for packaging your data with the additional package header and terminator.

Ports
Input

Data — UART send data
vector | scalar

The port sends the data to the UART port.

DMA will be used internally to copy data in FIFO.

Parameters
UART Port — Select UART port for data transmission
UART0 (default) | UART1 | UART2 | UART3 | UART4

Select a port number from UART0 to UART4 for data transmission.

The UART Port selection allows access to the different UART modules present on the processor.

Additional package header — Prefix header
S (default)

Specify the additional package header to use as the prefix before the data packet to synchronize the
data packets.

Additional package terminator — Suffix terminator
E (default)

Specify the additional package terminator to use as the suffix after the data packet to synchronize the
data packets.

Enable blocking mode — Enable blocking mode for data transmission
off (default) | on

Enabling this option ensures that the FIFO buffer is checked for data availability before sending the
data.

2 Blocks

2-126

Version History
Introduced in R2016b

See Also
F28M35x/F28M36x UART Receive

 F28M35x/F28M36x UART Transmit

2-127

F28M35x/F28M36x UART Receive
Receive data from the Universal Asynchronous Receiver Transmitter (UART) port

Libraries:
C2000 Microcontroller Blockset F28M35x/ M3
C2000 Microcontroller Blockset F28M36x/ M3

Description
Receive serial data from the Universal Asynchronous Receiver/ Transmitter (UART) port.

You can specify the ASCII characters for packaging your data with the additional package header and
terminator. You can specify the data type and the data length that you want to receive using the
block.

DMA interrupt will be used in the background for Data transfer from Receive FIFO to buffer.
UART_DMARx interrupt will be triggered when any data will be received in the FIFO.

Ports
Output

Data — UART receive data
vector | scalar

Outputs the data read from the UART port.

Status — UART receive status
0 | 1 | 2 | 3 | 4 | 8

The status port outputs one of these values:

• 0 — represents no error in data reception
• 1 — represents frame error
• 2 — represents parity error
• 3 — represents data synchronization error
• 4 — represents a break in the data reception
• 8 — represents an overrun error.

Parameters
UART Port — Select UART port for data transmission
UART0 (default) | UART1 | UART2 | UART3 | UART4

Select a port number from UART0 to UART4 for data transmission.

The UART Port selection allows access to the different UART modules present on the processor.

2 Blocks

2-128

Additional package header — Prefix header
S (default)

Specify the additional package header to use as the prefix before the data packet to synchronize the
data packets.

Additional package terminator — Suffix terminator
E (default)

Specify the additional package terminator to use as the suffix after the data packet to synchronize the
data packets.

Data type — Type of data to be received
uint8 (default) | double | single | int8 | int8 | int16 | int32 | uint32 | boolean

Select the output data type.

Data length — Size of data to be received
1 (default) | positive integer

Specify the data length to receive.

Enable blocking mode — Enable blocking mode for data transmission
off (default) | on

Enabling this option ensures that the FIFO buffer is checked for data availability before receiving the
data.

Sample time — Interval at which block reads data
0.1 (default)

Specify the sample time for receiving data. To execute this block asynchronously, set Sample Time to
-1.

Version History
Introduced in R2016b

See Also
F28M35x/F28M36x UART Transmit

 F28M35x/F28M36x UART Receive

2-129

F28M35x/F28M36x UDP Send
Send UDP packets to UDP host

Library
C2000 Microcontroller Blockset/ F28M35x/ M3

C2000 Microcontroller Blockset/ F28M36x/ M3

Description
Send UDP packets to a remote UDP host. Use UDP Send block for stateless, connectionless, and byte
oriented data transmission.

You can send one dimensional array of data type uint8, uint16, int16, uint32, int32, single, or double.

Parameters
Remote IP address (255.255.255.255 for broadcast)

Specify the IP address of the remote UDP host for data transmission. For broadcasting to all the
remote hosts, enter ‘255.255.255.255’.

Remote IP Port
Specify the port number of the remote UDP host for data transmission.

Local IP Port (-1 for automatic port assignment)
Enter the port number of the local UDP host for data transmission.

Wait until previous packet transmitted
Select this check box to transmit a UDP packet, only after the previous packet is transmitted to
avoid data overlap. Leave the default value ‘-1’ to allow automatic port assignment.

See Also
F28M35x/F28M36x UDP Receive

2 Blocks

2-130

F28M35x/F28M36x UDP Receive
Receive UDP packets from the specified UDP host

Library
C2000 Microcontroller Blockset/ F28M35x/ M3

C2000 Microcontroller Blockset/ F28M36x/ M3

Description
Receive UDP packets from the specified remote host. Use the UDP Receive block to output the UDP
packets received as one dimensional array of size defined in Data size parameter. Use UDP Receive
block for stateless, connectionless, and byte oriented data transmission.

You can specify the remote UDP host in the Remote IP address (0.0.0.0. for accepting all)
parameter to send the UDP packets to the local UDP host specified in the Local IP Port parameter.

The status port on the block indicates if the data is good or not.

The different values returned by the status port are as follows:

0 - represents no error in data reception

1 - represents an error in data reception.

Parameters
Local IP Port

Enter the local UDP host IP port to receive UDP packets.
Remote IP address (0.0.0.0 for accepting all)

Enter the IP address of the remote UDP host in 0.0.0.0 format to receive UDP packets. For
accepting data from any valid IP address, enter ‘0.0.0.0’.

Data type
Select the data type of the UDP packets.

Data size (N)
Enter the data size of the data type you have selected in the Data type parameter.

Wait until data received
Select this check box to receive a UDP packet only after the previous packet is received to avoid
data overlap.

 F28M35x/F28M36x UDP Receive

2-131

Sample time
Specify how often this block should read the port buffer. Enter a value greater than zero.

This value defaults to a sample time of 0.01 seconds. Smaller values require the processor to
complete the same number of instructions in less time, which can cause task overruns.

See Also
F28M35x/F28M36x UDP Send

2 Blocks

2-132

F28M35x/F28M36x TCP Send
Send TCP packets to a TCP host on TCP/IP network

Library
C2000 Microcontroller Blockset/ F28M35x/ M3

C2000 Microcontroller Blockset/ F28M36x/ M3

Description
Send TCP packets to another TCP host over the TCP/IP network. Use TCP Send block for connection-
oriented, stateful, and stream based data transmission. Also, the TCP Send block guarantees the data
transmission.

Using this block, you can send one dimensional array of data type uint8, uint16, int16, uint32, int32,
single, or double.

Parameters
Local IP Port

Enter the IP port of the local host for data transmission.
Wait until previous packet transmitted

Select this check box to send a TCP/IP data packet only after the previous packet is transmitted.

See Also
F28M35x/F28M36x TCP Receive

 F28M35x/F28M36x TCP Send

2-133

F28M35x/F28M36x TCP Receive
Receive TCP packets from TCP host on TCP/IP network

Library
C2000 Microcontroller Blockset/ F28M35x/ M3

C2000 Microcontroller Blockset/ F28M36x/ M3

Description
Receive TCP packets from another TCP host over the TCP/IP network. Use TCP Receive block for
connection-oriented, stateful, and stream based data transmission. Also, the TCP Receive block
guarantees the data transmission.

This block outputs data received as an array of the size specified in the Data size parameter.

The status port on the block indicates if the data is good or not.

The different values returned by the status port are as follows:

0 - represents no error in data reception

1 - represents an error in data reception.

Parameters
Local IP Port

Enter the IP port number of the local host to receive data.
Data type

Select the data type of the TCP packet.
Data size (N)

Enter the data size of the data type you have selected in the Data type parameter.
Wait until data received

Select this check box to receive a TCP packet only after the previous packet is received to avoid
data overlap.

Sample time
Specify how often this block should read the port buffer. Enter a value greater than zero.

This value defaults to a sample time of 0.01 seconds. Smaller values require the processor to
complete the same number of instructions in less time, which can cause task overruns.

2 Blocks

2-134

See Also
F28M35x/F28M36x TCP Send

 F28M35x/F28M36x TCP Receive

2-135

CLA Math
Implements CLA Math functions from CLA Math library

Libraries:
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
The CLA Math implements CLA Math functions from CLA Math library. CLA Math functions include
trigonometric, logarithmic, exponential, and power functions.

Note The CLA Math block only works within the model configured for CLA.

Trigonometric functions accept input in radians. PU Trigonometric functions accept input in per unit.

The block accepts only input of datatype single and outputs data of type single.

Input/Output Ports
Input

u — Input data
vector

The block accepts data specified as an N-by-1 array.
Data Types: single

Output

y — Output data
scalar

The blocks outputs data of single as N-by-1 array . The block outputs the value of the selected
function parameter.
Data Types: single

2 Blocks

2-136

Parameters
Function — Select CLA Math function
CLAsin (default) | CLAcos | CLAatan

Select the CLA Math functions which includes trigonometric, logarithmic, exponential and power
functions.

Version History
Introduced in R2023a

See Also
C28x CLA Task | CLA Subsystem | CLA Task Manager

 CLA Math

2-137

Interprocess Data Read
Receive messages from another processor using interprocess communication channel

Libraries:
SoC Blockset / Processor Interconnect
C2000 Microcontroller Blockset / Target Communication

Description
The Interprocess Data Read block asynchronously receives messages from another processor in an
SoC using an interprocess data channel. The Interprocess Data Read block connects to an
Interprocess Data Channel block that similarly connects to an Interprocess Data Write block
contained in a separate processor reference model. In simulation, data from another processor is
asynchronously received and processed in the processor containing the Interprocess Data Read block
and associated asynchronous task. This diagram shows a generalized view of the interprocessor data
channel connection.

Ports
Input

msg — Data message from interprocess data channel
scalar

This message port receives data messages from the connected Interprocess Data Channel block. The
messages process when the Task Manager block triggers the task containing the this block. For more
information on messages, see “Messages”.

Dependencies

This port appears only when Enable status port parameter is enabled.
Data Types: SoCData

2 Blocks

2-138

Output

data — Data frame read from another processor
vector

This port emits a data frame read from another processor connected via the Interprocess Data
Channel block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | bus

status — Interprocess data read status
0 | 1 | 2 | 4 | 6

The status port outputs one of these values:

• 0—No errors
• 1—Data not available
• 2—Data type mismatch
• 4—Data length mismatch
• 6—Data type and Data length mismatch

Dependencies

This port appears when you disable the Enable simulation port parameter.

Parameters
Enable simulation port — Enable peripheral simulation port to block
on (default) | off

Select this parameter to configure the msg output port to enable peripheral simulation capability.

Data type — Data type of interprocess data channel
double (default) | single | int8 | int16 | int32 | int64 | int64 | uint8 | uint16 | uint32 |
uint64 | uint64 | Boolean | bus

Enter the data type used by the interprocess data channel.

You can selectively show or hide the Data Type Assistant options by clicking >> button or <<
button. For more information, refer to “Specify Data Types Using Data Type Assistant”.

Number of buffers — Number of storage buffers
1 (default) | positive integer

Number of buffers making up the storage system.
Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Buffer size — Size of data vector read from interprocess data channel
1 (default) | positive integer

Enter the size of the data vector read from the interprocess data channel.

 Interprocess Data Read

2-139

Channel number — Select the channel number
0 (default) | 1 | 2 | ...

Select the channel where you want to send the data.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Enable interrupt — Enable interrupt to block
off (default) | on

Select this parameter at Interprocess Data Read and Interprocess Data Write blocks to configure the
block interrupts.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Participating cores — Select the participating cores of the processor
The options vary based on the hardware board you select

Select the participating cores as per the Hardware board you select in the Configuration Parameters
window.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Note Ensure that Channel number, Number of buffers and Participating cores parameters
match for the corresponding Interprocess Data Read (SoC Blockset) and Interprocess Data Write
(SoC Blockset) blocks of the model.

Sample time — Sample time
-1 (default) | positive scalar

Enter the sample time of the block to apply to the timer-driven task subsystem.

Version History
Introduced in R2020b

See Also
Interprocess Data Write | Interprocess Data Channel

Topics
“Interprocess Data Communication via Dedicated Hardware Peripheral”

2 Blocks

2-140

Interprocess Data Write
Send messages to another processor using interprocessor data write

Libraries:
SoC Blockset / Processor Interconnect
C2000 Microcontroller Blockset / Target Communication

Description
The Interprocess Data Write block asynchronously sends messages to another processor in an SoC
using an interprocess data channel. The Interprocess Data Write block connects to an Interprocess
Data Channel block that similarly connects to an Interprocess Data Read block contained in a
separate processor reference model. In simulation, data from the current processor is asynchronously
sent and processed in the processor containing the Interprocess Data Read block and associated
asynchronous task. This diagram shows a generalized view of the interprocess data channel.

Ports
Input

data — Data input
vector

This port receives a data vector to send to another processor over the interprocess data channel.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed point

Output

msg — Output data message
scalar

This message port sends the output data as a message to the connected Interprocess Data Channel
block. For more information on messages, see “Messages”.

 Interprocess Data Write

2-141

Dependencies

This port appears only when Enable status port parameter is enabled.
Data Types: SoCData

Parameters
Enable simulation port — Enable peripheral simulation port to block
on (default) | off

Select this parameter to configure the msg output port to enable peripheral simulation capability.

Channels number — Select the channel number
0 (default) | 1 | 2 | ...

Select the channel where you want to send the data.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Number of buffers — Number of storage buffers
1 (default) | positive integer

Number of buffers making up the storage system.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Enable interrupt — Enable interrupt to block
off (default) | on

Select this parameter at Interprocess Data Read and Interprocess Data Write blocks to configure the
block interrupts.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Participating cores — Select the participating cores of the processor
The options vary based on the hardware board you select

Select the participating cores as per the Hardware board you select in the Configuration Parameters
window.

Dependencies

This parameter is visible only when you disable the Enable simulation port parameter.

Note Ensure that Channel number, Number of buffers and Participating cores parameters
match for the corresponding Interprocess Data Read (SoC Blockset) and Interprocess Data Write
(SoC Blockset) blocks of the model.

2 Blocks

2-142

Version History
Introduced in R2020b

See Also
Interprocess Data Read | Interprocess Data Channel

Topics
“Interprocess Data Communication via Dedicated Hardware Peripheral”

 Interprocess Data Write

2-143

Interprocess Data Channel
Model interprocessor data channel between two processors

Libraries:
SoC Blockset / Processor Interconnect
C2000 Microcontroller Blockset / Test Bench Blocks

Description
The Interprocess Data Channel block simulates the interprocessor data channel available in
multiprocessor or OS managed SoC hardware board families. The block provides a channel for
asynchronous data transfer between two processors. This diagram shows a generalized view of the
interprocessor data connection.

Limitations
In an SoC model, when Interprocess Data Channel blocks form a closed-loop between two or more
tasks, it can create an artificial algebraic loop for the Simulink solver. To break the loop, the Simulink
solver implicitly adds a delay into the loop. This delay is related to an internal event and cannot be
modified by the user, but the delay typically will be on the same order as the base time-step of the
model. For more information on artificial algebraic loops in Simulink solvers, see “Artificial Algebraic
Loops”.

Ports
Input

datain — Input data message
scalar

This message port receives input data as a message from a connected Interprocess Data Write block.
For more information on messages, see “Messages”.
Data Types: SoCData

2 Blocks

2-144

Output

dataout — Output data message
scalar

This message port sends output data as a message to a connected Interprocess Data Read block. For
more information on messages, see “Messages”.
Data Types: SoCData

overwritten — Output overwrite notification signal
scalar

This port sends a true signal output whenever an overwrite of the internal buffer queue occurs. When
the connected processor model executes in external mode, the connected Interprocess Data Write
block generates the overwritten signal in the Simulation Data Inspector tool.

Dependencies

To enable this port, select the Show when buffer is overwritten parameter.
Data Types: Boolean

used — Output number of buffers in use
scalar

This port outputs the number of buffers currently in use in the block's internal buffer queue. When
the connected processor model executes in external mode, the connected Interprocess Data Write
block generates the used signal in the Simulation Data Inspector tool.

Dependencies

To enable this port, select the Show number of used buffers parameter.
Data Types: Boolean

event — Task event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven task.

Note For TI’s C2000™ hardware boards, when the Interprocess Data Channel block connects to the
Task Manager block, the allowed interrupts available in the Hardware Mapping tool must be in
consecutive order starting from IPC0. For example:

• If one Interprocess Data Channel block is in the model, then only IPC0 interrupt is allowed
• If two Interprocess Data Channel blocks are in the model, the only IPC0 and IPC1 interrupts are

allowed.

Dependencies

To enable this port, select the Show event port parameter.
Data Types: rteEvent

 Interprocess Data Channel

2-145

Parameters
Number of buffers — Number of storage buffers
1 (default) | positive integer

Number of buffers making up the storage system.

Propagation delay — Propagation delay of data through the channel
1e-6 (default) | non-negative number

Specify the propagation delay of data transfers through the this block. To ignore propagation delays,
set this parameter to 0.

Show event port — Option to enable task event ports
off (default) | on

Enable an event port that, when connected to the Task Manager block, can execute event-driven
tasks.

Show number of used buffers — Option to enable buffer count ports
off (default) | on

Enable an output port that shows the current number of buffers used in the Interprocess Data
Channel block internal buffer queue.

Show when buffer is overwritten — Enable port that shows buffer overwrites
off (default) | on

Enable an output port that signals when a overwrite of the Interprocess Data Channel block internal
buffer queue occurred.

Version History
Introduced in R2020b

See Also
Interprocess Data Read | Interprocess Data Write

Topics
“Multiprocessor Execution” (SoC Blockset)
“Interprocess Data Communication via Dedicated Hardware Peripheral” (SoC Blockset)

2 Blocks

2-146

Task Manager
Create and manage task executions in Simulink model

Libraries:
SoC Blockset / Processor Task Execution
C2000 Microcontroller Blockset / Scheduling

Description
The Task Manager block simulates the execution of software tasks as they would be expected to
behave on an SoC processor. With the Task Manager, you can add and remove tasks from your model
that can either be timer-driven or event-driven. Tasks can be represented in a model as rates, for
timer-driven tasks, or function-call subsystems, for event-driven tasks, contained inside a single
Model block. The Task Manager executes individual tasks based on their parameters, such as period,
duration, trigger, priority, or processor core, and the combination of that task with the state of other
tasks and their priorities in the running model.

Note The Task Manager block cannot be used in a referenced model. For more information on
referenced models, see Model block.

The Task Manager block provides three methods to specify the duration of a task in simulation:

• A probability model of task duration defined in the block mask.
• From a data file recording of either a previous task simulation or from a task on an SoC device.
• Input ports on the block, which you can connect to more dynamic models of task duration.

Limitations
• A model containing a Task Manager blocks does not support simulation stepping. For more

information on simulation stepping, see “Debug Simulations in the Simulink Editor”.

Ports
Output

Task1 — Function-call from Task1
scalar

A function-call signal that can trigger timer-driven and event-driven tasks, represented as rate or
function-call subsystems in the processor Model block, respectively.

For a rate port from a timer-driven subsystem, to show on the Model block, set the Block
Parameters > Main > Schedule rates and select ports. For a function-call port from an event-
driven subsystem contained in a Function-Call Subsystem block to show on the Model block, include
an Inport in the processor Model block connected to the function-call trigger port of the subsystem.
In the Inport, check Block Parameters > Signal Attributes > Output function call.

 Task Manager

2-147

Note The Task1 port must be connected to either a function-call port or scheduled rate signal port
on a Model block.

Dependencies

To create or remove a control signal port for a task, add or remove the task from the Task Manager
block by clicking the Add or Delete buttons in the block dialog mask.

Input

Task1Event — Message event notification
scalar

A message port that triggers the associated event-driven task. The Task1Event port receives the
message from either a Memory Channel block or IO Data Source block. For more information on
messages, see “Messages”.

Dependencies

To show a Task1Event port, then Task1 must have Type set to Event-driven.
Data Types: rteEvent

Task1Dur — Task duration
positive scalar

A positive value signal that specifies the execution duration of a task at the present time. For more
information on specifying task duration, see “Task Duration” (SoC Blockset).

Dependencies

To enable this port, set the Specify task duration via parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Enable task simulation — Enable simulation of task duration
on (default) | off

Enable or disable the simulation of task duration. If you clear this parameter, tasks simulate using a
function-call generator inheriting their period from the fundamental sample time of the model for
event-driven tasks or from the dialog for timer-driven tasks.

List of tasks — List of tasks
Task1 (default)

List of the tasks generated by the Task Manager block. Each task has a set of parameters listed in the
Main and Simulation tabs of the block dialog mask.

Add — Add task
button

Add a task to the Task Manager block. During deployment, each task is encapsulated as an execution
thread in the generated code. The properties of the thread are taken from the Main parameters for

2 Blocks

2-148

that task. During simulation, the task uses a combination of the Main and Simulation parameters
for that task.

Delete — Delete existing task
button

Remove a task from the Task Manager.

Dependencies

To enable this parameter, specify at least two tasks.

Use Schedule Editor ordering — Specify task priority using Schedule Editor tool
off (default) | on

Use the Schedule Editor to specify the ordering of the tasks in the SoC model. When using the
Schedule Editor, task priority is automatically assigned to the tasks based on their order in the
editor and the base rate priority of the processor model. For more information on using Schedule
Editor to specify task priority, see “Task Management with Schedule Editor” (SoC Blockset).

Main

Name — Name of task
Task1 (default) | character vector

Unique name of the task. The task name must only contain alphanumeric characters and underscores.

Type — Trigger type of task
Timer-driven (default) | Event-driven

Specify the task as timer-driven or event-driven. For more information on timer- and event-driven
tasks, see “Timer-Driven Task” (SoC Blockset) and “Event-Driven Tasks” (SoC Blockset), respectively.

Dependencies

To enable this parameter, set Type to Timer-driven.

Period — Timer period
0.1 (default) | positive scalar

Specify the trigger time period for timer-driven tasks.

Core — Processor core to execute task
0 (default) | non-negative integer

Specify the number of the processor core where a task executes. For more information on selecting
cores and core execution visualizations, see “Multicore Execution and Core Visualization” (SoC
Blockset).

Priority — Priority of task in scheduler
10 (default) | positive integer

Specify the schedulers priority for the event-driven task between 1 and 99. Higher priority tasks can
preempt lower priority tasks, and vice versa. The task priority range is limited by the hardware
attributes. For more information on task priority, see “Task Priority and Preemption” (SoC Blockset).

 Task Manager

2-149

Dependencies

To enable this parameter, set Type to Event-driven and Use Schedule Editor ordering to
off.

Drop tasks that overrun — Drop tasks that overrun
off (default) | on

Select this parameter to force tasks to drop, rather than catch up, following an overrun instance. For
more information on task overruns, see “Task Overruns and Countermeasures” (SoC Blockset).

Note No more than 2 instances of a task can overrun execution when Drop tasks that overrun
is set to off. Any additional task instances that overrun drop automatically.

Simulation

Play recorded task execution sequence — Enable playback from file
off (default) | on

Select this parameter for the Task Manager block to play back the recorded execution data provided
from the specified File name parameter. For more information on replaying task execution, see “Task
Execution Playback Using Recorded Data” (SoC Blockset).

Specify task duration via — Source of task execution time
Dialog (default) | Input port | Record task execution statistics

Specify the source of the timing information for the task execution.

• Dialog - Use a normally distributed probabilistic model with Mean, Deviation, Min, and Max
defined in the block dialog mask.

• Input port – When set from Input port, the block input port dynamically defines the execution
duration.

• Record task execution statistics – Use a normally distributed probabilistic model with
mean and deviation provided in file specified by File name.

For more information on configuring task duration, see “Task Duration” (SoC Blockset).

Task duration settings

Add — Adds distribution
button

Adds a distribution to the set of normal distributions that generates an execution duration. For more
information on configuring task duration, see “Task Duration” (SoC Blockset).

Note Only a maximum five distributions can be assigned to a single task.

Delete — Remove distribution
button

Remove a distribution from the set of normal distributions.

2 Blocks

2-150

Percent — Likelihood of distribution
100 (default) | positive scalar

Specify the likelihood of each normal distribution. The Percent weighted sum of normal distributions
determines the task duration likelihood. For more information on configuring task duration, see “Task
Duration” (SoC Blockset).

Note The sum of Percent for all the distributions in a single task must equal 100.

Mean — Mean task duration in simulation
1e-06 (default) | positive scalar

Specify the mean duration of the task during simulation of the task. The simulated task duration uses
a normal distribution with a specified Mean and SD parameter values as a first-order approximation
of the task behavior. For more information on configuring task duration, see “Task Duration” (SoC
Blockset).

SD — Standard deviation of task duration in simulation
0 (default) | positive scalar

Specify the standard deviation duration of the task during simulation of the task. The simulated task
duration uses a normal distribution with a specified Mean and SD as a first-order approximation of
the task behavior. For more information on configuring task duration, see “Task Duration” (SoC
Blockset).

Min — Lower limit of task duration
1e-06 (default) | positive scalar

Lower limit of a task duration distribution. For more information on configuring task duration, see
“Task Duration” (SoC Blockset).

Max — Upper limit of task duration
1e-06 (default) | positive scalar

Upper limit of a task duration distribution. For more information on configuring task duration, see
“Task Duration” (SoC Blockset).

File name — File containing diagnostic scheduling data
filepath

The data in this file specifies the Mean and SD parameter values. When the Play recorded task
execution sequence parameter is selected, the specified CSV file provides the explicit task
execution timing. The CSV file contains the diagnostic data of the task scheduler previously recorded
from the hardware board. For more information on configuring task duration, see “Task Duration”
(SoC Blockset).

Dependencies

To enable this parameter, set the Specify task duration via parameter to Recorded task
execution statistics.

 Task Manager

2-151

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design” (SoC
Blockset).

The tasks in the Task Manager block execute as threads in the generated code. The task parameters
in the Task Manager block specify the priority and execution core of the thread.

See Also
IO Data Source | Memory Channel

Topics
“Get Started with Multiprocessor Blocks on MCUs” (SoC Blockset)
“What is Task Execution?” (SoC Blockset)
“Task Duration” (SoC Blockset)

2 Blocks

2-152

Hardware Interrupt
Trigger downstream function-call subsystems from interrupt service routine

Libraries:
C2000 Microcontroller Blockset/ Scheduling

Description
Use the Hardware Interrupt block to create an interrupt service routine (ISR) automatically in the
generated code of your model. The ISR executes the downstream function-call subsystem associated
with event ports of the block.

The function call subsystem associated with the event output port run at same priority as that of ISR
priority.

Using this block you can:

• Create ISRs.
• Set ISR priority.
• Enable or disable interrupt preemption.
• Use the Hardware Mapping tool to configure the desired event or interrupt.

The Hardware Mapping tool allows you to configure the hardware interrupts tasks for the selected
hardware board. With this tool, you can map the tasks in your software model to the available event
sources and interrupts:

• Manually select the task in Mapping Browser > Tasks > CPU name. Select the desired event or
interrupt source. For more, see “Configure Interrupts and Events Using Hardware Mapping”

Ports
Input

name Event Task — Function-call event input simulation
scalar

The simulation-only message input port, when connected to an Function-Call Generator block, the
block acts as pass-through with the output emitted on the name Event port in simulation.

Dependencies

To enable this port, select the Enable simulation port parameter.

Output

name Event — Generate interrupt request
Scalar

 Hardware Interrupt

2-153

The output of this block is a function-call. The number of function call outputs will be same as events
selected to serve in an ISR.

Parameters
Number of events to serve — Specify number of events to serve
1 (default) | 2 | 3 | <32

Specify the number of events to serve for the Hardware Interrupt bock. This parameter enables the
specified number events as output port event#

Simulink task priority — Set priority of selected ISR
50 (default) | positive integer or nonnegative integer

The value you specify in this parameter sets the priority of the downstream function-call subsystem.
The simulink task priority of the selected (ISR) is relative to the model base rate priority.

Note The default model base sample rate priority is set to 40 with a lower priority value indicating a
higher priority task. To achieve this the Higher priority value indicates higher task priority
option must be enabled in Configuration Parameters > Solver pane.

Disable interrupt pre-emption — Select to disable interrupt preemption
off (default) | on

By default, an interrupt can be preempted by a higher priority interrupt. Selecting this option allows
low priority interrupts to complete their execution without being preempted by other interrupts.

Enable simulation port — Enable simulation ports to block
off (default) | on

Select this parameter to add an compatible simulation input port.

Version History
Introduced in R2023a

See Also
Hardware Mapping | “Configure Interrupts and Events Using Hardware Mapping”

2 Blocks

2-154

ADC Interface
Convert analog signal on ADC input pin to digital signal

Description
The ADC Interface block simulates the analog-to-digital conversion (ADC) of a hardware board. The
input analog signal gets sampled and converted into a representative digital value. A start event
message signals the block to sample the input analog voltage signal. When the conversion completes,
the block emits the digital representation of the analog signal and sends an event to a Task Manager
block. At this point, a connected task can execute with the new ADC sample.

Ports
Input

start — Start analog to digital conversion
start an analog to digital conversion event

Specify an event signal to start the sampling and measurement of the analog input port signal.
Data Types: rteEvent

analog — Analog voltage signal
scalar

Input analog voltage signal to convert into a digital measurement.
Data Types: double | single

Output

digital — SoC message data
scalar

This port sends the ADC Interface input signal data as a message to the msg input port of the ADC
Read block.
Data Types: SoCData

wd event — Analog watchdog task event signal
scalar

This port sends a message at whenever the analog voltage signal exceeds the specified Lower
threshold and Upper threshold property values. This output connects to the input of the Task
Manager block to execute the associated event-driven task to react to the over- or under-voltage
input event.

Dependencies

To enable this port, enable the Enable analog watchdog parameter.
Data Types: rteEvent

 ADC Interface

2-155

event — Task event signal
scalar

This port sends a message at each analog to digital signal conversion event. This output connects to
the input of the Task Manager block to execute the associated event-driven task after executing the
ADC event.

Dependencies

To enable this port, enable the Enable interrupt parameter.
Data Types: rteEvent

Parameters
Single Channel

Resolution (bits) — Resolution of digital measurement
12 (default) | 16

An input analog signal can be represented in digital values in the form of 12 or 16 bits. The minimum
value of an analog signal that can be represented in 1 bit is called resolution. One bit represents the
minimum voltage resolution measurable by the ADC. The minimum voltage resolution can be
determined using the following equation:

where n is the Resolution (bits) and Vref is the Voltage reference (V) parameter values.
Example: 16

Voltage reference (V) — Reference voltage in ADC
3 (default) | 3.3

The reference voltage determines the total voltage range that the ADC can convert into a digital
value without saturating. Any voltage signal higher than this value produces the maximum possible
value that can represented by the Resolution (bits) parameter.
Example: 3.3

Acquisition time (s) — Time required for ADC to capture input voltage
320e-9 (default) | positive scalar

Specify the time required for the ADC to capture the input voltage during sampling.
Example: 200e-9

Conversion time (s) — Time to convert physical voltage sample to digital value
240e-9 (default) | positive scalar

Specify the required time to convert the physical voltage sample to the digital representation and
output the value.
Example: 20e-9

Charge/dischard time constant (s) — Charge or discharge time constant of the ADC acquisition
circuit
0 (default) | nonnegative scalar

2 Blocks

2-156

Specify the charge or discharge time constant of the ADC sample acquisition circuitry.

Multichannel

Number of channel — Number of channels used in multichannel sampling
1 (default) | integer in the range 1 to 16

Specify the number of channels used by the ADC module. Specifying 2 or more channels allows for
either more efficient or precise measurements of the input signal.

Conversion type — Type multichannel conversion
Sequential (default) | Simultaneous | Oversampling

Select the type of multichannel conversion.

• Sequential — Take sequential measurements on each ADC channel. At a new ADC event, the
next channel in the sequence of channels takes a new measurement of the input signal. All other
previous channel values remain unchanged. Sequential measurement improves sampling by
allowing for individual conversion times of each channel to exceed the sample rate of the ADC
module.

• Simultaneous — Take simultaneous measurements on each ADC channel. At a new ADC event,
all channels take a new measurement of the input signal, replacing the previously captured value.
Simultaneous measurement allows for noise to be removed from the measurement using an
average value or other filter.

• Oversampling — Take oversampled measurements across the channels of the ADC. Between two
timer-driven ADC events, each channel takes a time offset ADC measurement, resulting in the
channels sampling the input signal evenly between the two ADC events. The resulting channel
output provides an oversampled measurement of the input signal at each sample. Oversampling
measurement allows for the ADC module to exceed the theoretical Nyquist sample rate of the
individual channel and ADC hardware.

Event

Enable interrupt — Option to enable interrupt event generation
enable (default) | disable

Select this parameter for the ADC Interface block to generate an interrupt following an ADC
acquisition and to enable the event output port. You can connect this event port to a Task Manager
block to simulate asynchronous ADC operation.

Condition — Condition on when to trigger interrupt
Acquisition time (default) | Acquisition + Conversion time

Select the timing condition for when to generate the ADC interrupt event. Using Acquisition +
Conversion time, the interrupt is generated when the complete measurement is available. Using
Acquisition time, the interrupt is generated prior to the measurements availability. Allowing for
the associated task to start during the conversion and reduce execution delay in the total
measurement cycle.

Enable analog watchdog — Option to enable analog watchdog interrupt event generation
off (default) | on

Select this parameter for the ADC Interface block to generate an analog watchdog interrupt following
an ADC acquisition where the input voltage exceeds the specified Lower threshold and Upper

 ADC Interface

2-157

threshold parameter values. Selecting this parameter also enables the wd event output port, which
you can connect to a Task Manager block to simulate task action on an over- or under-voltage event
on the ADC input signal.

Lower threshold — Lower threshold watchdog trigger
0.1 (default) | real-valued scalar

Specify the lower threshold value of the analog input signal on which to trigger an analog watchdog
interrupt event.
Example: 0.2

Upper threshold — Upper threshold watchdog trigger
2.9 (default) | real-valued scalar

Specify the upper threshold value of the analog input signal on which to trigger an analog watchdog
interrupt event.
Example: 3.0

Interrupt latency (s) — Interrupt generation latency
0 (default) | positive scalar

Specify the time required by the ADC hardware module from the completion of the conversion to the
generation of the interrupt in software.
Example: 0.00001

Version History
Introduced in R2020b

See Also
ADC Read | PWM Write | PWM Interface

Topics
“Get Started with Multiprocessor Blocks on MCUs” (SoC Blockset)
“Integrate MCU Scheduling and Peripherals in Motor Control Application” (SoC Blockset)

External Websites
https://en.wikipedia.org/wiki/Analog-to-digital_converter

2 Blocks

2-158

https://en.wikipedia.org/wiki/Analog-to-digital_converter

PWM Interface
Simulate pulse width modulation (PWM) output from hardware

Description
The PWM Interface block simulates the PWM output of a hardware board. This blocks gets duty cycle
data messages from a connected PWM Write block that can either generate a switching pulse-width-
modulated waveform or pass the duty cycle value to the output.

Ports
Input

msg — SoC message data
numeric vector

This port receives the duty cycle data from the msg port of a connected PWM Write block.
Data Types: SoCData

Output

PWM — Pulse-width-modulated signal
scalar

This port outputs the pulse-width-modulated rectangular wave defined by the dCycle input port.
Dependencies

To enable this port, set the Output mode parameter to Switching.
Data Types: double

~PWM — Complimentary pulse-width-modulated signal
scalar

This port outputs the complimentary PWM signal.
Dependencies

To enable this port, set the Output mode parameter to Switching.

 PWM Interface

2-159

Data Types: double

dCycle — Analog approximation of pulse-width-modulated signal
scalar

This port emits the averaged value of the PWM waveform, which is a pass-through of the duty cycle
input value. This image shows the average output signal equivalent to the PWM output.

Dependencies

To enable this port, set the Output mode parameter to Average.
Data Types: double

event — Event emitted on each PWM cycle
scalar

This port sends a message during each PWM output event that can connect to the start port of the
ADC Interface block to synchronize ADC and PWM events in closed-loop systems.

Dependencies

To enable this port, the Type parameter must be set to ADC start or ADC start and PWM
interrupt.
Data Types: rteEvent

eventn — Replicate event emitted on each PWM cycle
scalar

This port creates a replica port of the event output port to coordinate multiple ADC modules with the
PWM module.

Dependencies

To enable this port, set the Type parameter to ADC start or ADC start and PWM interrupt and
the Number of replicas parameter to a value greater than or equal to 2.
Data Types: rteEvent

interrupt — Interrupt event emitted on each PWM cycle
scalar

2 Blocks

2-160

This port sends a message during each PWM output event that can connect to the Task Manager
block to trigger other tasks in response to the PWM output update.

Dependencies

To enable this parameter, set the Type parameter to PWM interrupt or ADC start and PWM
interrupt.
Data Types: rteEvent

Parameters
Main

PWM waveform period (s) — Period of PWM waveform
50e-6 (default) | positive scalar

Specify the period of the PWM waveform in seconds.

Note For PWM waveform period (s) of 10ns, the duty cycle must be greater than 1%.

Output mode — Output mode
Switching (default) | Average

Simulate the output signal as either a true PWM waveform by specifying Switching or as the
average of the duty cycle by specifying Average.
Example: Switching

Counter mode — Counter waveform
Up-Down (default) | Up | Down

The counter mode specifies the shape of the underlying sawtooth waveform that drives the PWM
output signal inside the PWM module. In Up mode, the sawtooth counter increments to the maximum
and then resets to zero on each period. In Down mode, the sawtooth counter decrements to zero then
resets to the maximum. In Up-Down mode, the sawtooth counter oscillates from zero to the maximum
value.

 PWM Interface

2-161

Example: Up

Sampling mode — Sampling mode
End of PWM period (default) | Mid or End of PWM period | Immediate (at compare
matches)

Specify the time at which the input duty cycle is sampled.
Example: Mid or End of PWM period

Dead time (s) — Dead band switching delay
1e-6 (default) | positive scalar

A time delay is introduced between turning off one of the transistors of a leg of an inverter and
turning on the other transistor to ensure that a dead short circuit does not occur. This diagram shows
the expected duty cycle and the delay introduced by the transistor switching the dead band.

2 Blocks

2-162

Example: 450e-9

PWM Output

At position of period — Signal change at position in period
High | Low | Change | NoChange

Specify the state of the PWM waveform signal at the position in the waveform relative to the total
period. When set to High or Low, the waveform output changes to 1 or 0, respectively. When set to
Change, the waveform inverts the current value. When set to NoChange, the waveform does not
change. The position can either be the start or mid point of the PWM waveform. This table gives
the default settings for these parameters.

Parameter Default
At start of period High
At mid of period NoChange

Dependencies

At mid of period is only available when the Counter mode parameter is set to Up-Down.

At compare n — Signal change at comparator n trigger
High | Low | Change | NoChange

Specify the state of the PWM waveform signal when the internal PWM counter triggers comparator n.
When set to High or Low, the waveform output changes to 1 or 0, respectively. When set to Change,
the waveform inverts the current value. When set to NoChange, the waveform does not change. Two
comparators, 1 and 2, are available to modify the PWM signal. This table gives the default settings
for these parameters.

Parameter Default
At compare 1 Low
At compare 2 NoChange

 PWM Interface

2-163

Dependencies

At compare 1 and At compare 2 parameters are only available when the Counter mode parameter
is set to Up or Down.

At compare n direction count — Signal change at comparator n trigger
High | Low | Change | NoChange

Specify the state of the PWM waveform signal when the internal PWM counter crosses the
comparator n value in the specified direction. When set to High or Low, the waveform output
changes to 1 or 0, respectively. When set to Change, the waveform inverts the current value. When
set to NoChange, the waveform does not change. Two comparators, 1 and 2, are available to modify
the PWM signal. This table gives the default settings for these parameters.

Parameter Default
At compare 1 up count Low
At compare 1 down count High
At compare 2 up count NoChange
At compare 2 down count NoChange

Dependencies

These arguments are only available when the Counter mode parameter is set to Up-Down.

Phase

Phase offset in degree (0-360) — PWM waveform offset
scalar from 0 to 360

Specify the phase of the PWM waveform relative period of waveform. The phase is represented as a
scalar between 0 to 360 degrees.

Event

Type — Type of events to generate
ADC start (default) | PWM interrupt | ADC start and PWM interrupt

Specify the types of events on which to generate events. When the Typevalue is set to:

• ADC start — Generate an event to trigger the start ADC conversion.
• PWM interrupt — Generate an interrupt event to trigger the start of a task.
• ADC start and PWM interrupt — Generate events for both ADCs and tasks.

Example: ADC start and PWM interrupt

ADC start condition — Trigger mode relative to PWM waveform
End of PWM period (default) | Mid of PWM period | Mid or End of PWM period | Compare
1 up count | Compare 1 down count | Compare 2 up count | Compare 2 down count

Specify when this block triggers an event relative to the PWM waveform.

2 Blocks

2-164

Example: Mid or End of PWM period
Dependencies

To enable this parameter, the Type parameter must be set to ADC start or ADC start and PWM
interrupt.

Generate on — Generate event on multiple of PWM update
1st event (default) | nth event | 16th event

Specify to generate and output an ADC trigger event on the specified multiple of the PWM vent. For
example, if Generate on is set to the 6th event, the PWM Interface block receives 6 messages
updates the output 6 times before generating an ADC event message.
Example: 4th event
Dependencies

To enable this parameter, the Type parameter must be set to ADC start or ADC start and PWM
interrupt.

Number of replicas — Generate replica event ports
1 (default) | integer from 1 to 16

Generate replica ADC event ports and events on the block. Use this coordinate the triggering of
multiple ADCs modules from a single PWM Interface block.
Example: 4
Dependencies

To enable this parameter, the Type parameter must be set to ADC start or ADC start and PWM
interrupt.

 PWM Interface

2-165

PWM interrupt condition — Trigger mode relative to PWM waveform
End of PWM period (default) | Mid of PWM period | Mid or End of PWM period | Compare
1 up count | Compare 1 down count | Compare 2 up count | Compare 2 down count

Specify when this block triggers an interrupt event relative to the PWM waveform.

Example: Mid or End of PWM period
Dependencies

To enable this parameter, the Type parameter must be set to PWM interrupt or ADC start and
PWM interrupt.

Interrupt latency (s) — Interrupt generation latency
0 (default) | positive number

Specify the time required by the PWM hardware module from the completion of the output update to
the generation of the interrupt in software.
Example: 0.00001
Dependencies

To enable this parameter, the Type parameter must be set to PWM interrupt or ADC start and
PWM interrupt.

Generate on — Generate event on multiple of PWM update
1st event (default) | nth event | 16th event

Specify to generate and output a PWM interrupt trigger event on the specified multiple of the PWM
vent. For example, if Generate on is set to the 6th event, the PWM Interface block receives 6
messages updates the output 6 times before generating an PWM interrupt event message.

2 Blocks

2-166

Example: 4th event

Dependencies

To enable this parameter, the Type parameter must be set to PWM interrupt or ADC start and
PWM interrupt.

Version History
Introduced in R2020b

See Also
PWM Write | ADC Interface

Topics
“Get Started with Multiprocessor Blocks on MCUs” (SoC Blockset)
“Integrate MCU Scheduling and Peripherals in Motor Control Application” (SoC Blockset)

External Websites
https://en.wikipedia.org/wiki/Pulse-width_modulation

 PWM Interface

2-167

https://en.wikipedia.org/wiki/Pulse-width_modulation

C28x eCAP
Receive and log transitions on capture input pin or configure auxiliary pulse width modulator

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The eCAP block captures the timing of important external events, such as Hall sensor signals in speed
measurements of rotating machinery. When not used in capture mode, the block can be used in
APWM mode, which is a single-channel, asymmetric pulse width modulator (APWM). You can add one
eCAP block to your model for each capture pin. You cannot assign the same eCAP pin to two eCAP
blocks in a model. eCAP and APWM modes use the same pins. In eCAP mode, the pins are used as
input to capture the transitions. In APWM mode, the pins are used to output a PWM waveform.

Input/Output Ports
Input

SI — Synchronization input from software
scalar

The input from the software used to synchronize the eCAP counter. The synchronization occurs when
the synchronization input value is 1.

Dependencies

The port appears only when:

• On the General tab, you select Operating mode > eCAP or APWM.
• On the General tab, you select Enable counter Sync-In mode and Enable software-forced

counter synchronizing input.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

2 Blocks

2-168

RA — One-Shot capture sequence
scalar

Starts a One-Shot capture sequence.

A 2-bit stop register is used to compare the Mod4 counter output, and when the register and counter
values are equal the Mod4 counter is stopped.
Dependencies

The port appears only when:

• On the General tab, you select Operating mode > eCAP.
• On the eCAP tab, you set Select mode control > One-Shot and select Enable One-Shot re-

arming control input.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

T — APWM period
scalar

Period of the APWM.
Dependencies

The port appears only when:

• On the General tab, you select Operating mode > APWM.
• On the APWM tab, you select Waveform period source > Input port.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

W — APWM width
scalar

Width of the APWM.
Dependencies

The port appears only when:

• On the General tab, you select Operating mode > APWM.
• On the APWM tab, you select Duty cycle source > Input port.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Output

The output ports appear only in eCAP mode.

TS — Output timestamps of capture events
vector

TS is a vector of 4 signal dimension corresponding to CAP1, CAP2, CAP3 and CAP4 time stamp values
depending on the capture event selected in Stop value after on the eCAP tab. Use the Enable reset
counter after capture event # time-stamp option to reset the counter after an event. This option
is useful for finding the time difference between the events.

 C28x eCAP

2-169

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

CF — Status of capture event
vector

CF is a vector of dimension 4, corresponds to CEVT1-CEVT2. The status of the capture event. 0
indicates that no event has occurred. 1 indicates that the event specified by the Stop value after
parameter has occurred at the eCAP pin.

Dependencies

The port appears only when you select Enable capture event status flag output on the eCAP tab.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

OF — Status of overflow
scalar

The status of overflow. 0 indicates that counter has not overflowed. 1 indicates that the counter has
overflowed from the highest value to 0.

Dependencies

The port appears only when you select Enable overflow status flag output on the eCAP tab.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Parameters
General

Operating mode — Select eCAP or APWM mode
eCAP (default) | APWM

When you select eCAP, the block captures and logs pin transitions for each capture unit to a FIFO
buffer. When you select APWM, the block generates asymmetric pulse width modulation (APWM)
waveforms for driving downstream systems.

eCAPx pin — Select capture unit pin
eCAP1 (default) | eCAP2 | eCAP3 | eCAP4 | eCAP5 | eCAP6 | eCAP7

Select the required eCAP module to have a dedicated eCAP pin for capturing the external events.

The pin selection for the eCAP module can be done by browsing to Hardware Implementation >
Target hardware resources. The selection option is provided only if the module has more than one
pin that can be configured for an eCAP module.

Counter phase offset value (0 ~ 4294967295) — Time base for event captures
0 (default) | integer in [0 4294967295]

This value provides the time base for event captures, clocked by the system clock. A phase register is
used to synchronize with other counters via software- or hardware-forced synchronization. For
information about software- or hardware-forced synchronization, see the Enable counter Sync-In
mode parameter. This value is useful in APWM mode when you need a phase offset between capture
modules. Set the phase offset to an integer from 0 to 42949667295 (232) counts.

2 Blocks

2-170

Enable counter Sync-In mode — Enable TSCTR counter to load from CTRPHS register
off (default) | on

Synchronization can be done using the SYNCI event or the software. When synchronization occurs,
the shadow register CTRPHS is loaded into the active counter TSCTR in the current eCAP module
and the eCAP modules downstream.

Enable software-forced counter synchronizing input — Synchronize one or more eCAP time
bases
off (default) | on

A software method for synchronizing one or more eCAP time bases. The synchronization occurs when
the synchronization input value is 1.

Dependencies

This parameter appears only when Enable counter Sync-In mode is selected.

Sync output selection — Synchronize eCAP counter with other eCAP counters
Disabled (default) | Pass through | CTR=PRD

Synchronizes an eCAP counter with other eCAP counters. The options are:

• CTR=PRD — Triggers the sync-out signal when the counter value equals the period.

• Pass through — The sync-in event is passed through as the sync-out signal.

Note

• Pass through option in case of F2838x/002x and 003x processor is only applicable for SWSYNC
input. ECAPSYNCIN signals cannot be passed through and must be configured by the
downstream eCAP modules under Hardware Implementation > Target hardware
resources > eCAP.

• Sync output selection of CTR=PRD is only applicable for eCAP when Operating mode is set to
APWM.

• Disabled — Disables the sync-out signal.

Sample time — Frequency at which block reads input pin value
0.001 (default)

Sample time for the block in seconds.

eCAP

To enable configuration parameters on the eCAP tab, set Operating mode to eCAP on the General
tab.

Event prescaler (integer from 0 to 31) — Prescales input signal in multiples of 2
0 (default) | scalar integer in [0 31]

The input signal is prescaled by twice the value of this parameter. For example, if you enter 1, the
input is prescaled by 2, and for 31, the input is prescaled by 62. Entering 0 bypasses the input
prescaler, leaving the input capture signal unchanged.

 C28x eCAP

2-171

Select mode control — Mode of capture
Continuous (default) | One-Shot

The Continuous option performs continuous timestamp captures (events 1 through 4) using a
circular buffer.

The One-Shot option enables the Enable One-Shot rearming control via input port option.

Enable One-Shot rearming control via input port — Re-arms a One-Shot capture sequence
off (default) | on

When this parameter is selected, a One-Shot capture sequence is re-armed as follows:

1 Mod4 counter is reset to zero.
2 Mod4 counter is unfrozen.
3 Capture register loading is enabled.

Dependencies

This parameter appears only when you select One-Shot for Select mode control.

Stop value after — Number of capture events after which capture stops
Capture Event 1 (default) | Capture Event 2 | Capture Event 3 | Capture Event 4

The number of capture events after which you want to stop the capture sequence.

Enable reset counter after capture event # time-stamp — Resets counter after capture event
off (default) | on

The eCAP process resets the counter after receiving a capture event timestamp. In this case, #
represents the number of the capture event set in the Stop value after parameter.

Select capture event # polarity — Start capture event on rising edge or falling edge
Rising Edge (default) | Falling Edge

The option that starts a capture event. In this case, # represents the number of the capture event set
in the Stop value after parameter.

Time-Stamp counter data type — Data type of counter
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

The data type of the timestamp counter.

Enable capture event status flag output — Output capture event status
off (default) | on

Outputs the capture event status flag at the output port CF. The block outputs 0 until the event is
captured. After the event, the flag value is 1.

Capture flag data type — Data type of output port CF
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

The data type of the output port CF.

2 Blocks

2-172

Dependencies

This parameter appears only when you select Enable capture event status flag output.

Enable overflow status flag output — Output status of elements of FIFO buffer
off (default) | on

Outputs the status of the elements of the FIFO buffer at the output port OF.

Overflow flag data type — Data type of output port OF
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

The data type of the output port OF.
Dependencies

This parameter appears only when you select Enable overflow status flag output.

APWM

To enable configuration parameters on the APWM tab, set Operating mode to APWM in the General
tab.

Waveform period units — Units for measuring waveform period
Seconds (default) | Clock cycles

Clock cycles uses the high-speed peripheral clock cycles of the processor.

Waveform period source — Source from which waveform period value is obtained
Specify via dialog (default) | Input port

Select Specify via dialog to enter the value in Waveform period, or select Input port to use
a value from the T input port.

Waveform period — Period of PWM waveform
0.001 (default)

Period of the PWM waveform measured in clock cycles or seconds, as specified in Waveform period
units.

Note The term clock cycles refers to the high-speed peripheral clock on the F2812 chip. This high-
speed peripheral clock is 75 MHz by default because the high-speed peripheral clock prescaler is set
to 2 (150 MHz/2).

Dependencies

This parameter appears only when Waveform period source is set to Specify via dialog.

Duty cycle units — Units for measuring duty cycle
Percentages (default) | Clock cycles

The units used for measuring the duty cycle.

Duty cycle source — Source from which duty cycle for PWM waveform is obtained
Specify via dialog (default) | Input port

 C28x eCAP

2-173

Select Specify via dialog to enter the value in Duty cycle, or select Input port to use a value
from the W input port.

Duty cycle — Ratio of PWM waveform pulse duration to PWM waveform period
50 (default)

The ratio of PWM waveform pulse duration to PWM waveform period. This ratio is expressed in Duty
cycle units.

Output polarity select — Set active level for output
Active High (default) | Active Low

When you select Active High, the compare value (duty cycle) defines the high time. Selecting
Active Low directs the compare value to define the low time.

Interrupt

Post interrupt on capture event # — Set interrupt source to capture event
off (default) | on

You can use the C28x Hardware Interrupt block to respond to this interrupt. In this case, #
represents the number of the capture event set in the Stop value after parameter.

Dependencies

This parameter appears only when you set Operating mode to eCAP in the General tab.

Post interrupt on counter overflow — Trigger interrupt on counter overflow
off (default) | on

Triggers an interrupt when the counter overflows.

Dependencies

This parameter appears only when you set Operating mode to eCAP in the General tab.

Post interrupt on counter equal period match — Post interrupt when counter equals period
register
off (default) | on

Posts interrupt when the value of counter is same as the value of the period register (CTR = PRD).

Dependencies

This parameter appears only when you set Operating mode to APWM in the General tab.

Post interrupt on counter equal compare match — Post interrupt when counter equals compare
register
off (default) | on

Posts interrupt when the value of the counter is same as the value of the compare register (CTR =
CMP).

Dependencies

This parameter appears only when you set Operating mode to APWM in the General tab.

2 Blocks

2-174

See Also
“Overview of Time-Base Synchronization in ePWM Type 4” | C28x Hardware Interrupt | c280x/
C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F28004x/F28002x/F28003x ePWM

 C28x eCAP

2-175

C28x I2C Receive
Configure inter-integrated circuit (I2C) module to receive data from I2C bus

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The I2C Receive block configures the inter-integrated circuit (I2C) module to receive data from the
two-wire I2C serial bus. The I2C Receive block supports I2C bus communication between the
processor and external peripherals or other controllers. The block can run in either slave or master
mode.

When the I2C module is configured as master, the module receives data from a slave. When the I2C
module is configured as a slave, the module receives data from the master. Configure the I2C module
by navigating to Configuration Parameters > Hardware Implementation > Target hardware
resources.

To read data from a slave, send the address of the register to be read using the I2C Transmit block to
the slave. Ensure that the data is sent from the Tx FIFO to the slave before the data is read from the
slave using the I2C Receive block. For more information, see “Using the I2C Bus to Access Sensors”.

Input/Output Ports
Input

SAR — Slave address register value
scalar

The slave address register value.

Dependencies

This port appears only when Slave address source is set to Input port.

2 Blocks

2-176

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Output

RD — Received data from I2C bus
scalar | vector

The data read from the I2C bus.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

status — I2C communication status
scalar

Status values from the I2C status register (I2CSTR).

Dependencies

This port appears only when Output receiving status is selected.
Data Types: uint16

Parameters
Module — Module for communication
I2C_A (default) | I2C_B

The I2C module to be used for communication. The number of I2C modules supported varies across
different C2000 processors.

Addressing format — Address format for communication
7–Bit addressing (default) | 10–Bit addressing | Free data format

The address format for communication. The diagram shows the format for each option. The I2C
Receive block sets the R/W bit to 0.

 C28x I2C Receive

2-177

S — Start bit

R/W — Read/Write

ACK — Acknowledge

P — Stop bit

MSB — Most significant bit

LSB — Least significant bit

Slave address source — Slave address source of I2C slave
Specify via dialog (default) | Input port

The method for setting the slave address register of the I2C slave.

Slave address register — Slave address register value
80 (default) | scalar

Enter a 7- or 10-bit slave address according to the addressing format selected.
Dependencies

This parameter appears only when Slave address source is set to Specify via dialog.

Bit count — Bit count for communication
8 (default) | integer in [1 8]

The number of bits in the data byte received by the I2C module.

Read data length — Length of received data
1 (default) | scalar

The number of Data type the block receives (not bytes). If this parameter is set to more than 1, the
output will be a vector.

Initial output — Value of I2C node output to model
0 (default) | scalar | vector

The value the I2C node outputs to the model before it has received data. By default, the block outputs
0 if the I2C value is not received.

Set NACK bit — NACK bit during I2C acknowledge cycle
off (default) | on

Generates a no-acknowledge bit (NACK) during the I2C acknowledge cycle and ignores new bits from
the transmitting I2C node.

2 Blocks

2-178

Enable stop condition — Stop message to I2C Transmit block
off (default) | on

Enables the I2C Receive block (master) to send a stop message to the I2C Transmit block (slave).

Output receiving status — Indicates when I2C Receive block receives message
off (default) | on

Enables the status output port, which indicates when the I2C Receive block receives a message.

Sample time — Frequency at which data is read from I2C device
0.001 (default) | –1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this parameter to -1.

Data type — Type of data in data vector
int8 (default) | uint8 | int16 | uint16 | int32 | uint32

Sets the data type of the data received. If the size of the received data is less than 8 bits, then the
data is right-justified.

See Also
C28x I2C Transmit

 C28x I2C Receive

2-179

C28x I2C Transmit
Configure inter-integrated circuit (I2C) module to transmit data to I2C bus

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The I2C Transmit block configures the inter-integrated circuit (I2C) module to transmit data to the
two-wire I2C serial bus. The I2C Transmit block supports I2C bus communication between the
processor and external peripherals or other controllers. The block can run in either slave or master
mode.

When the I2C module is configured as master, the module receives data from a slave. When the I2C
module is configured as a slave, the module receives data from the master. Configure the I2C module
by navigating to Configuration Parameters > Hardware Implementation > Target hardware
resources.

To read data from a slave, send the address of the register to be read using the I2C Transmit block to
the slave. Ensure that the data is sent from the Tx FIFO to the slave before the data is read from the
slave using the I2C Receive block. For more information, see “Using the I2C Bus to Access Sensors”.

Input/Output Ports
Input

SAR — Slave address register value
scalar

The slave address register value.

Dependencies

This port appears only when Slave address source is set to Input port.

2 Blocks

2-180

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

WD — Data written to I2C bus
scalar | vector

The data written to the I2C bus.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Output

status — I2C communication status
scalar

Status values from the I2C status register (I2CSTR).

Dependencies

This port appears only when Output transmitting status is selected.
Data Types: uint16

Parameters
Module — Module for communication
I2C_A (default) | I2C_B

The I2C module to be used for communication. The number of I2C modules supported varies across
different C2000 processors.

Addressing format — Address format for communication
7–Bit addressing (default) | 10–Bit addressing | Free data format

The address format for communication. The diagram shows the format for each option. The I2C
Transmit block sets the R/W bit to 1.

 C28x I2C Transmit

2-181

S — Start bit

R/W — Read/Write

ACK — Acknowledge

P — Stop bit

MSB — Most significant bit

LSB — Least significant bit

Slave address source — Slave address source of I2C slave
Specify via dialog (default) | Input port

The method for setting the slave address register of the I2C slave.

Slave address register — Slave address register value
80 (default) | scalar

Enter a 7- or 10-bit slave address according to the addressing format selected.

Dependencies

This parameter appears only when Slave address source is set to Specify via dialog.

Bit count — Bit count for communication
8 (default) | integer in [1 8]

The number of bits in the data byte received by the I2C module.

Enable stop condition — Send stop bit to indicate that data transmission is complete
off (default) | on

When the I2C module is configured as master, the I2C module sends out a stop bit to the I2C bus to
indicate that the data transmission is complete. The I2C bus is free for any other I2C module to
initiate a read/write operation.

Enable repeat mode — Retransmit data until stop or start condition is detected
off (default) | on

When you enable repeat mode, the I2C module transmits data continuously until it detects a stop or
start condition. If you use this mode, also consider selecting Enable stop condition to ensure that
data transmit stops after the stop condition.

If you disable repeat mode, the I2C module operates in standard mode, sending a specific number of
data values once.

2 Blocks

2-182

Output transmitting status — Indicates when I2C transmit block transmits message
off (default) | on

Enables the status output port, which indicates when the I2C transmit block transmits a message.

See Also
C28x I2C Receive

 C28x I2C Transmit

2-183

C28x SCI Receive
Receive data on target via serial communication interface (SCI) from host

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The SCI Receive block supports asynchronous serial digital communication between the processor
and other asynchronous peripherals. This block receives scalar or vector data using the specified SCI
hardware module.

A model can only contain one SCI Receive block for each module. The C28x processor has four SCI
modules — A, B, C, and D. The number of SCI modules available varies depending on the processor
selected. You can configure the SCI modules by navigating to Hardware Implementation > Target
hardware resources. Verify that these settings meet the requirements of your application.

Note Serial External mode with similar SCI module blocks results in conflict check error.

The block outputs data either in blocking mode or in non-blocking mode. In blocking mode, the model
blocks the execution while it waits for the requested data to be available. In non-blocking mode, the
model runs continuously. To set the block in blocking mode, select the Wait until data received
option.

Input/Output Ports
Input

Length — Data length received from input port
scalar

The block accepts the length of the data to be received.

2 Blocks

2-184

Dependencies

To enable this port, set the Data length option parameter to Length via input port.
Data Types: uint8 | uint16 | uint32

Output

Data — Data received from serial bus
scalar | vector

The data received from the serial communication bus.

• The data port is configured as fixed size signal when data length is set to Length via dialog.
It outputs only received data.

• The data port is configured as variable size signal when data length is set to Length via
Input port or Variable Length. In this case the port outputs received data along with the
length of the received data.

When Data length is set as Variable Length or Length via input port the output data
width is 0 if the data is not received. This is independent of connection output type set for Action
taken when connection times out parameter.

In order to generate code for variable size signals, go to Configuration Parameters > Code
Generation > Interface and select Variable-size signals. For more information, see

• “Variable-Size Signal Basics”
• “Variable-Size Signal Length Adaptation”

Note Currently, Monitor & Tune (External mode) is not supported to output the variable size signal.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single

status — Status of serial communication
scalar

Indicates the status of the received serial data:

• 0 - No errors.
• 1 - A time-out occurred while the block was waiting to receive data. This is the default status if

expected header is not received.
• 2 - The received data contains an error (checksum error) or if the required tail is not received.
• 3 - SCI parity error flag: occurs when a character is received with a mismatch.
• 4 - SCI framing error flag: occurs when an expected stop bit is not found.
• 5 - SCI overrun error flag: occurs when a character is transferred to the receive registers before

reading the previous character.
• 6 - SCI break-detect flag: occurs when SCI receiver data line (SCIRXD) remains continuously low

for at least ten bits.
• 7 - Data not available flag: occurs in non-blocking mode when data is not available in the FIFO.

The status is Data not available when the data length is set to Variable length after receiving the
header, and if data is not available in the FIFO to read as a data or terminator.

 C28x SCI Receive

2-185

• 8 - Partial Data available: Partial data status represents the data received partially excluding
header. The status is set to Partial Data when the data length is set to Variable length, and if
the terminator is expected to be received and when not received up to the Max data length.

Dependencies

This port appears only when you select Output receiving status.
Data Types: uint16

Parameters
SCI module — SCI module for communication
A (default) | B | C | D

The SCI module used for communication. The number of SCI modules supported varies across
different C2000 processors.

Additional package header — Indicates start of data
'S' (default) | string | char | number from 0 to 255

The data located at the front of the received data package, which is not part of the data being
received, and indicates the start of data. The additional package header must be represented using
ASCII characters. You can use a string or a number (0–255). You must add single quotes around
strings entered for this parameter, but the quotes are not received or included in the total byte count.
To specify a null value (no package header), enter two single quotes only.

The data type of header is not related to the data type mentioned on the block.

Note

• Match additional package headers or terminators with those specified in the host SCI Transmit
block.

• If header is empty then whatever present in the receive buffer will be considered as starting point
to receive. In case of data length option as Variable length, the tail will be calculated from this
starting point itself if header is empty.

• If the expected header is not provided on the block then the data present in the FIFO is
considered as a starting point of reception and from that point onwards required length of the
data and terminal will be expected to retrieve.

Additional package terminator — Indicates end of data
'E' (default) | string | char | number from 0 to 255

The data located at the end of the received data package, which is not part of the data being
received, and indicates the end of data. The additional package terminator must be represented using
ASCII characters. Use a string or a number (0–255). You must add single quotes around strings
entered for this parameter, but the quotes are not received or included in the total byte count. To
specify a null value (no package terminator), enter two single quotes only.

The data type of terminator is not related to the data type mentioned on the block.

2 Blocks

2-186

Number of retries for header receive check — Custom retrial count for header receive check
16 (default) | positive integer, finite | scalar

This parameter ensures to check the expected header as part of receive data.

When the data is received in the FIFO, the block verifies for the header in the received data one by
one. If the data does not match with the header, the block will discard the data and continue looking
for the header in the next data until the retry count expires.

If the header matches within the retry count, then it is considered as start of the packet and the
further received data is considered as valid data.

Data type — Data type of output data
uint8 (default) | single | int8 | int16 | uint16 | int32 | uint32

The data type of the output data.

If data is transmitted as uint8 but SCI receive block output is expected to be int16/int32 then it
is assumed that even number of bytes are present and that the output is formatted in different data
type. In case if there are odd number of data bytes are present then last byte will be missed in the
formatting even if the status is showing No Error.

Data length option — Data length the block receives
Length via dialog (default) | Length via input port | Variable length

Select the data length option for the block.

• Length via dialog - Length of the data to be received is provided via Data length
parameter.

• Length via input port - the block receives variable size data depending on the length
received at the input port. If the length received at the input port is greater than the length
provided in the maximum data length parameter, then maximum data length is considered.

• Variable length - The data is received until the tail matches in non-blocking mode. Ensure that
the tail is not present as a part of data. When only header and terminator is available and data is
not available then the status is set to No Error with variable data length set to zero.

• If terminator value does not match till maximum length or if the data is not available in
between then the block will output the received data along with its length and status will be
set to Partial data available.

• If terminator value is not provided the block tries to receive data of max data length. If length
of the data read is less than max length or if the data is not available in between then the block
will output received data with its length and status will be set to Partial data available.

• If data is not read then status is set to Data not available.
• The status is read as data not available when Header and terminator received with no data.
• Tail to be avoided as part of SCI Data when using in variable length as presence of Tail is

treated as end of Data Packet.
• Output data port length is 0 if no data is received in variable length mode.

To enable input port length, select data length option as Length via input port.

Data length — Number of data types the block receives
1 (default) | positive integer, finite | scalar

 C28x SCI Receive

2-187

The number of Data type the block receives (not bytes). If this parameter is set to more than 1, the
output will be a vector. Ensure that the data length specified is same as that of the SCI Transmit
block from which data is received.

Dependencies

To enable this parameter, set the Data length option parameter to Length via dialog .

Max data length — Maximum number of data types the block receives
1 (default) | positive integer, finite | positive integer, finite

The maximum number of Data type the block can receive (not bytes).

If the data size to be received (based on data length or max data length, header, terminator and data
type) is greater than FIFO size bytes then it will result in loss of data.

Dependencies

To enable this parameter, set the Data length option parameter to either Length via input
port or Variable length.

Initial output — Default value output from block
0 (default) | scalar | vector

The default value output from the SCI Receive block. This value is output, for example,when the
Action taken when connection timeout parameter is set to Output the last received
value and a connection time-out occurs before data is received.

Action taken when connection times out — Select type of output when connection times out
Output the last received value (default) | Output custom value

Specifies what to output when a connection time out occurs. If Output the last received
value is selected, the block outputs the last received value. If a value has not been received, the
block outputs the Initial output value.

If you select Output custom value, use the Output value when connection times out
parameter to set the custom value.

Output value when connection times out — Custom output value from block when connection
times out
0 (default) | scalar | vector

Set the custom time out value.

Output value when connection times out parameter is available only when Action taken when
connection times out parameter is set to Output custom value.

Sample time — Frequency at which data is read from SCI device
0.1 (default) | -1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this parameter to -1.

Dependencies

To enable this parameter, set the Data length option parameter to either Length via dialog or
Variable length.

2 Blocks

2-188

The sample time will inherit properties from input port when data length option is set to Length via
input port.

Wait until data received — Wait until requested data is available
off (default) | on

• on — If this option is enabled, the system waits until data is available to read (when data length is
reached). The read operation runs in the blocking mode. The read operation is blocked when the
block is waiting for the requested data. If data is available, the block outputs the data. If data is
not available, the block waits for the data.

A task overrun occurs if the target hardware is still waiting for the data when the next read
operation begins.

To fix overruns, increase the time step by using the Sample time parameter.
• off — If this option is disabled, the system checks FIFO at each time step (in polling mode) for

data to read. If data is present, the block reads and outputs the contents. If data is not present,
the block outputs the last value and continues. When you clear this parameter, the read operation
runs in the nonblocking mode.

Dependencies

To enable this parameter, set the Data length option parameter to either Length via input
port or Length via dialog.

Note When data length option is selected as Variable length, the block execution will always occurs
in non-blocking mode.

Timeout — Amount of time in seconds the block waits until data is received
inf (default) | positive value greater than 0

Specify the amount of time that the block should wait during each time step if the data is not
available in the receive FIFO to read. If timeout occurs, the read operation is aborted.

If the value is set to inf the block waits infinitely for data to be available in FIFO.

Note 3 types of mode can be achieved with parameters Wait until data received and Timeout.

• Blocking mode - In blocking mode, parameters Wait until data received is enabled and
Timeout set to inf.

In this mode, if data is not available in FIFO to read, it will wait for infinite time until the data is
available to read.

• Blocking mode with Timeout - In blocking mode with timeout, parameters Wait until data
received is enabled and Timeout set to any finite value > 0.

In this mode if data is not available in FIFO to read, it will wait checking the FIFO status until the
timeout value mentioned. If data is not available in FIFO to read within that time then the SCI
Receive block will output status as timeout.

• Non-Blocking mode - In Non-Blocking mode, parameter Wait until data received is disabled.

 C28x SCI Receive

2-189

In this mode the SCI Receive block will read the data if the data is available in FIFO else the SCI
Receive block will output status as Data not available.

In order to receive data of length more than FIFO length use either blocking mode or blocking mode
with timeout. This ensures of extra time to get remaining data in FIFO after reading entire FIFO.

In blocking mode with and without timeout enabled, you might encounter task overrun as it waits for
the data to read.

Dependencies

To enable this parameter, set the Data length option parameter to either Length via input
port or Length via dialog and enable the parameter Wait until data received.

Output receiving status — Status of serial communication
off (default) | on

Creates a Status block output that provides the status of serial communication.

See Also
C28x SCI Transmit | C28x Hardware Interrupt | “Serial Configuration for External Mode and PIL” on
page 1-67

2 Blocks

2-190

C28x SCI Transmit
Transmit data from target via serial communication interface (SCI) to host

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The SCI Transmit block transmits scalar or vector data using the specified SCI hardware module. The
sampling rate and data type are inherited from the input port.

A model can only contain one SCI Transmit block for each module. The C28x processor has four SCI
modules — A, B, C, and D. The number of SCI modules available varies depending on the processor
selected. You can configure the SCI modules by navigating to Hardware Implementation > Target
hardware resources. Verify that these settings meet the requirements of your application. Verify
that these settings meet the requirements of your application.

Note

• Fixed-point inputs are not supported by this block, but you can use a Data Type Conversion block
to convert the fixed-point format to native data type. In the Data Type Conversion block, set the
Input and output to have equal parameter to Stored Integer (SI).

• Serial External mode with similar SCI module blocks results in conflict check error.

The block outputs data either in blocking mode or in non-blocking mode. In blocking mode, the model
blocks the execution while it waits if transmit FIFO is full. In non-blocking mode, the model runs
continuously. To set the block in blocking mode, select the Wait until previous data transmitted
option.

 C28x SCI Transmit

2-191

Input/Output Ports
Input

Data — Data written to serial bus
scalar | vector

Input data written to the serial communication bus.

If the input port of SCI Transmit is of variable data size and If the length of variable data is 0, then
the block will transmit only the header and terminator.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single

Output

Status — Data transmitted at given time step
scalar

The port outputs 0 if the data is transmitted at a given time step. Otherwise, it outputs value 1,
indicating that transmit FIFO is full and data transmission is not successful.
Dependencies

To enable this port, select the Output status parameter.
Data Types: uint8 | uint16

Parameters
SCI module — SCI module for communication
A (default) | B | C | D

The SCI module used for communication.

Additional package header — Indicates start of data
'S' (default) | string | char | number from 0 to 255

The data located at the beginning of the sent data package, which is not part of the data being
transmitted, and indicates the start of data. The additional package header must be represented
using ASCII characters. Use a string or a number (0–255). You must add single quotes around strings
entered for this parameter, but the quotes are not sent or included in the total byte count. To specify
a null value (no package header), enter two single quotes only.

The data type of header is not related to the data type mentioned on the block.

Note Match additional package headers or terminators with those specified in the host SCI Receive
block.

Additional package terminator — Indicates end of data
'E' (default) | string | char | number from 0 to 255

The data located at the end of the sent data package, which is not part of the data being transmitted,
and indicates the end of data. The additional package terminator must be represented using ASCII

2 Blocks

2-192

characters. Use a string or a number (0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent or included in the total byte count. To specify a null value (no
package terminator), enter two single quotes only.

The data type of terminator is not related to the data type mentioned on the block.

Frame size — Specify length of data to be received
600 (default) | any positive integer

Specify the data bytes to be transferred. This parameter can be used when transmit rate is more than
the receive rate.

Frame size is calculated by: Receive rate/Transmit rate. For example, if a signal is transmitted at 50
micro sec, and frame size is 600, you can receive the data at 0.03 sec.

When the frame size is more than 1, the additional package header and terminator are added at the
start and end of the frame. For example, <Header>DATA(1:frame size)<Terminator>

Where, DATA(1:frame size) indicates the signal to be transmitted of length to frame size.

Wait until previous data transmitted — Wait until data received in previous time step is sent
on (default) | off

• on — When you select this parameter, the transmit operation runs in the blocking mode. In this
mode, if transmit FIFO is full then it will wait for previous data to be transmitted and verifies if
space is available in the FIFO to transmit the current data.

A task overrun occurs if the target hardware is still waiting for the requested data to be sent when
the next transmit operation is scheduled to begin. To fix overruns increase the time step by using
the Sample time parameter.

• off — When you clear this parameter, the transmit operation runs in the non-blocking mode. In
this mode, if the block is still transmitting the data received in the previous time step, the data at
the input port in the current time step is dropped.

In either mode, if the block is yet to establish the connection between the transmitting and
receiving hosts. or if the connection is lost, the data at the input port is dropped.

Output status — Option to display the transmit status during data transmission
off (default) | on

Select this option to display the transmit status during data transmission.

When you select the Output status parameter, the block configures an output port. The port on the
block is labeled as Status, indicating that the block outputs the status of the transmit operation at the
output port.

See Also
C28x SCI Receive | C28x Hardware Interrupt | “Serial Configuration for External Mode and PIL” on
page 1-67

 C28x SCI Transmit

2-193

C28x Software Interrupt Trigger
Generate software-triggered nonmaskable interrupt

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
When you add the Software Interrupt Trigger block to a model, the block polls the values on the input
port. When the input value is greater than the value in the Trigger software interrupt when input
value is greater than parameter, the block posts the interrupt corresponding to the selected CPU
and Peripheral Interrupt Expansion (PIE) numbers to the Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model. The Hardware Interrupt block
processes the software-triggered interrupt from this block into an interrupt service routine on the
processor. Set the interrupt number in the Hardware Interrupt block to the value you set in the
Software Interrupt Trigger block.

The CPU and PIE interrupt numbers together specify a single interrupt for a single peripheral
module. For information about the mapping of CPU and PIE interrupt numbers to these peripheral
interrupts, see C28x Hardware Interrupt.

Note Fixed-point inputs are not supported by the Software Interrupt Trigger block.

Input/Output Ports
Input

PIEIFRx.INTy — Triggers software interrupt
scalar

2 Blocks

2-194

The Software Interrupt Trigger block triggers the software interrupt based on the CUP interrupt
number and PIE interrupt number parameters when the input value is greater than the value in
the Trigger software interrupt when input value is greater than parameter.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Parameters
CPU interrupt number — CPU interrupt number corresponding to hardware interrupt
7 (default) | scalar

Enter an integer value to set the CPU interrupt number corresponding to the hardware interrupt. For
information about CPU numbers of C2000 processors, see C28x Hardware Interrupt.

PIE interrupt number — PIE interrupt number corresponding to hardware interrupt
8 (default) | scalar

Enter an integer value to set the PIE number corresponding to the hardware interrupt. For
information about PIE numbers of C2000 processors, see C28x Hardware Interrupt.

Trigger software interrupt when input value is greater than — Sets value above which block
posts an interrupt
0 (default) | scalar

Enter the value for the level that indicates that the interrupt is asserted by a requesting routine.

See Also
C28x Hardware Interrupt

 C28x Software Interrupt Trigger

2-195

C28x SPI Controller Transfer
Write data to and read data from SPI peripheral device

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The C28x SPI Controller Transfer block writes data to and reads data from a peripheral device over
the Serial Peripheral Interface (SPI). The block runs in controller mode. The block outputs an array of
the same size and data type as the input values. You can use this block with the Byte Pack and Byte
Unpack blocks for heterogeneous data type transfers.

Configure the SPI modules for the specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the requirements
of your application.

Using this block, you can access an SPI device to measure quantities such as temperature and
pressure.

Ports
Input

Tx — Data written to registers of SPI peripheral device (MOSI)
vector

The data written by the block to the registers of a peripheral device over the SPI interface.
Data Types: uint16

2 Blocks

2-196

Output

Rx — Data read from registers of SPI peripheral device (MISO)
vector

The data read by the block from the registers of a peripheral device over the SPI interface.
Data Types: uint16

Parameters
Main

SPI module — SPI module to write and read data
SPI_A (default) | SPI_B | SPI_C | SPI_D

The SPI peripheral module to which the SPI peripheral device is connected. Each processor has a
different number of modules.

Clock polarity — SPI clock polarity
Rising_edge (default) | Falling_edge

The clock polarity (CPOL) for SPI communication mode.

Clock phase — SPI clock phase
No_delay (default) | Delay_half_cycle

The clock phase (CPHA) for SPI communication mode.

Enable register address — Enables SPI register address
on (default) | off

Enables the Register address parameter.

Register address — SPI register address
0 (default) | positive integer scalar | positive integer vector

The peripheral register address from which the block reads data.

For example, if we consider the “Using SPI to Read and Write Data to SPI EEPROM” example, to
write the EEPROM memory by address 32 (0x0020) and the write command 2, the entry can be [2
0 32] which corresponds to write command followed by 16-bit address and the data at the input
port.

Here the address is split as 0x00 (0) and 0x20 (32) as two 8-bit numbers and is entered in the
register address. The reason for splitting it as two 8-bit numbers is the setting in Data bits
parameter in Advanced tab. Since this is set to 8 bits, the data in the vector format should not be
considered more than 8-bit. If you select the parameter as 16, then 0 and 32 corresponds to 32-bit
address (0x00000020) instead of 16-bit.

Dependencies

This parameter appears only when you select Enable register address.

 C28x SPI Controller Transfer

2-197

Advanced

Data bits — Number of bits in SPI transfer
8 (default) | integer in the range [1 16]

Length in bits of each transmitted or received character, specified as an integer in [1 16]. For
example, if you select 8, the maximum value that can be transmitted using SPI is 28 – 1. If you send
data values greater than this value, the buffer overflows.

Chip select calling method — Method to select SPI peripheral device
Provided by the SPI peripheral (default) | Explicit GPIO calls

The SPI controller uses these methods to select SPI peripheral devices.

• Provided by the SPI peripheral — The SPI controller uses the STE pin assignment
parameter in Hardware Implementation > Target Hardware Resources > SPI to select the
peripheral device. peripheral select and deselect are handled by the SPI peripheral.

• Explicit GPIO calls — The SPI controller uses the general purpose input/output pins
explicitly to select/deselect SPI peripheral devices. The SPI controller Transfer block selects the
peripheral before data is transmitted and deselects the peripheral after data is received using
GPIO pins.

Chip select pin polarity — SPI peripheral select pin polarity
Active low (default) | Active high

The logic levels supported by the peripheral select pin to select the SPI peripheral device.

• Active low — The device is enabled on logic low. The SPI peripheral device is enabled when its
peripheral select pin is set to low.

• Active high — The device is enabled on logic high. The SPI peripheral device is enabled when
its peripheral select pin is set to high.

Dependencies

This parameter appears only when Chip select calling method is set to Explicit GPIO calls.

Chip select pin — SPI peripheral select pin
1 (default) | positive integer scalar

The general purpose input/output pin that serves as peripheral select for SPI.

Dependencies

This parameter appears only when Chip select calling method is set to Explicit GPIO calls.

Version History
Introduced in R2017b

See Also
C28x SPI Receive | C28x SPI Transmit | C28x Hardware Interrupt

2 Blocks

2-198

C28x SPI Receive
Receive data through Serial Peripheral Interface (SPI) on target

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The SPI Receive block supports synchronous, serial peripheral input/output port communications
between the processor and external peripherals or other controllers. The block can run in either
peripheral or controller mode. In controller mode, the SPISIMO pin transmits data, and the SPISOMI
pin receives the data. When controller mode is selected, the SPI initiates the data transfer by sending
a serial clock signal (SPICLK), which is used for the entire serial communications link. Data transfers
are synchronized to this SPICLK, which enables both controller and peripheral to send and receive
data simultaneously. The maximum frequency for the clock is one quarter of the processor clock
frequency.

The SPI device receives data and places the data in the receive buffer. The SPI Receive block reads
the data from the receive buffer. In controller mode, the C28x SPI Transmit block initiates SPI
transmission by writing data to the transmit buffer. Then, the data received in the receive buffer is
read by the SPI Receive block. In peripheral mode, the SPI Receive block is used to read the data in
the receive buffer, which is received from the controller. Then, the data is written into the transmit
buffer using the SPI Transmit block. From the transmit buffer, the data is sent to the controller.

Configure the SPI modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the requirements
of your application.

 C28x SPI Receive

2-199

Ports
Output

Rx — SPI receive data
vector

The data read from the device over the SPI interface.
Data Types: uint16

Status — SPI receive status
0 | 1 | 2

Status of receipt of data. Error status values indicate:

• 0 — No errors.
• 1 — Data loss occurred because of overflow.
• 2 — Data not ready. A time out occurred while the block was waiting to receive data.

Dependencies

This port appears only when Enable blocking mode is not selected.
Data Types: uint16

Parameters
Main

SPI module — SPI module to read data
SPI_A (default) | SPI_B | SPI_C | SPI_D

The SPI module to which the SPI peripheral device is connected. Each processor has a different
number of modules.

Clock polarity — SPI clock polarity
Rising_edge (default) | Falling_edge

The clock polarity used for SPI communication mode. This parameter must be the same for both
transmit and receive blocks.

Clock phase — SPI clock phase
No_delay (default) | Delay_half_cycle

The clock phase used for SPI communication mode. This parameter must be the same for both
transmit and receive blocks.

Output data length — SPI output data length
1 (default) | positive integer

The received data is a vector of type uint16 and the data length is as specified in this parameter (not
bytes).

2 Blocks

2-200

Enable blocking mode — Enable SPI blocking mode
off (default) | on

When this option is selected, the algorithm waits until data is received before continuing processing.

Sample time — SPI sample time selection
0.1 (default) | –1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this parameter to -1.

Advanced

Data bits — Number of bits in SPI transfer
8 (default) | integer in [1 16]

Length in bits of each transmitted or received character. For example, if you select 8, the maximum
value that can be transmitted using SPI is 28–1. If you send data greater than this value, the buffer
overflows. This parameter must be the same for both transmit and receive blocks.

Chip select calling method — Method to select SPI peripheral device
Provided by the SPI peripheral (default) | Explicit GPIO calls

The SPI controller uses these methods to select SPI peripheral devices:

• Provided by the SPI peripheral — The SPI controller uses the STE pin assignment
provided in Hardware Implementation > Target hardware resources > SPI to select the
peripheral device. peripheral select and deselect are handled by the SPI peripheral.

• Explicit GPIO calls — The SPI controller uses the general purpose input/output pins instead
of the STE pin of the SPI peripheral to select/deselect SPI peripheral devices. The SPI Receive
block deselects the peripheral using GPIO pins after receiving data. To select the peripheral, the
C28x SPI Transmit block must be used along with the SPI Receive block. Use this option only in
controller mode. Select the Enable blocking mode option to ensure that the SPI transmission is
complete before the peripheral is deselected.

Chip select pin polarity — SPI peripheral select pin polarity
Active low (default) | Active high

The logic levels supported by the peripheral select pin to select the SPI peripheral device.

• Active low — The device is enabled on logic low. The SPI peripheral device is enabled when its
peripheral select pin is set to low.

• Active high — The device is enabled on logic high. The SPI peripheral device is enabled when
its peripheral select pin is set to high.

Dependencies

This option appears only when Chip select calling method is set to Explicit GPIO calls.

Chip select pin — SPI peripheral select pin
0 (default) | positive integer scalar

The general purpose input/output pin that serves as the peripheral select for SPI.
Dependencies

This option appears only when Chip select calling method is set to Explicit GPIO calls.

 C28x SPI Receive

2-201

Version History
Introduced in R2017b

See Also
C28x SPI Transmit | C28x SPI Controller Transfer | C28x Hardware Interrupt

2 Blocks

2-202

C28x SPI Transmit
Transmit data through Serial Peripheral Interface (SPI) on target

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The SPI Transmit block supports synchronous, serial peripheral input/output port communications
between the processor and external peripherals or other controllers. The block can run in either
peripheral or controller mode. In controller mode, the SPISIMO pin transmits data, and the SPISOMI
pin receives the data. When controller mode is selected, the SPI initiates the data transfer by sending
a serial clock signal (SPICLK), which is used for the entire serial communications link. Data transfers
are synchronized to this SPICLK, which enables both controller and peripheral to send and receive
data simultaneously. The maximum frequency for the clock is one quarter of the processor clock
frequency.

The SPI Transmit block writes data to the transmit buffer, and the data is transmitted to the SPI
device. In controller mode, the SPI Transmit block initiates SPI transmission by writing the data to
the SPI transmit buffer. The C28x SPI Receive block must be used along with the SPI Transmit block
to read the data received in the receive buffer. In peripheral mode, the SPI Receive block is used to
read the data in the receive buffer, which is received from the controller. Then, the data is written
into the transmit buffer using the SPI Transmit block. From the transmit buffer, the data is sent to the
controller.

The sampling rate is inherited from the input port. The supported data type is uint16.

When the SPI transmit interrupt is configured, the transmit FIFO interrupt flags are cleared in the
step function instead of the interrupt service routine. After the data is placed in the transmit buffer,
the transmit FIFO interrupt is set and the previous transmit interrupt FIFO flags are cleared.
Configure the SPI modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the requirements
of your application.

 C28x SPI Transmit

2-203

Ports
Input

Tx — SPI Transmit data
vector

The data written to the device over the SPI interface.
Data Types: uint16

Output

Status — SPI transmit status
0 | 1 | 2

Status of SPI data transmission. Error status values indicate:

• 0 — No errors.
• 1 — A time-out occurred while the block was transmitting data.
• 2 — The transmitted data contains an error.

Dependencies

This port appears only when Enable blocking mode is not selected.
Data Types: uint16

Parameters
Main

SPI module — SPI module to write data
SPI_A (default) | SPI_B | SPI_C | SPI_D

The SPI module to which the SPI peripheral device is connected. Each processor has a different
number of modules.

Clock polarity — SPI clock polarity
Rising_edge (default) | Falling_edge

The clock polarity used for SPI communication mode. This parameter must be the same for both
transmit and receive blocks.

Clock phase — SPI clock phase
No_delay (default) | Delay_half_cycle

The clock phase used for SPI communication mode. This parameter must be the same for both
transmit and receive blocks.

Enable blocking mode — SPI blocking mode enable
off (default) | on

When this option is selected, the algorithm waits until data is sent before continuing processing.

2 Blocks

2-204

Advanced

Data bits — Number of bits in SPI transfer
8 (default) | integer in [1 16]

Length in bits of each transmitted or received character. For example, if you select 8, the maximum
value that can be transmitted using SPI is 28–1. If you send data greater than this value, the buffer
overflows. This parameter must be the same for both transmit and receive blocks.

Chip select calling method — Method to select SPI peripheral device
Provided by the SPI peripheral (default) | Explicit GPIO calls

The SPI controller uses these methods to select SPI peripheral devices:

• Provided by the SPI peripheral — The SPI controller uses the STE pin assignment
provided in Hardware Implementation > Target hardware resources > SPI to select the
peripheral device. peripheral select and deselect are handled by the SPI peripheral.

• Explicit GPIO calls — The SPI controller uses the general purpose input/output pins instead
of the STE pin of the SPI peripheral to select/deselect SPI peripheral devices. The SPI Transmit
block selects the peripheral using GPIO pins before transmitting data. To deselect the peripheral,
you must use the C28x SPI Receive block along with the SPI Transmit block. Use this option only
in controller mode. Select the Enable blocking mode option to ensure that the SPI transmission
is complete before the peripheral is deselected.

Chip select pin polarity — SPI chip select pin polarity
Active low (default) | Active high

The logic levels supported by chip select pin to select the SPI peripheral device.

• Active low — The device is enabled on logic low. The SPI peripheral device is enabled when its
peripheral select pin is set to low.

• Active high — The device is enabled on logic high. The SPI peripheral device is enabled when
its peripheral select pin is set to high.

Dependencies

This option appears only when Chip select calling method is set to Explicit GPIO calls.

Chip select pin — SPI peripheral select pin
0 (default) | positive integer scalar

The general purpose input/output pin that serves as the peripheral select for SPI.

Dependencies

This option appears only when Chip select calling method is set to Explicit GPIO calls.

Version History
Introduced in R2017b

See Also
C28x SPI Receive | C28x SPI Controller Transfer | C28x Hardware Interrupt

 C28x SPI Transmit

2-205

C28x Watchdog
Configure counter reset source of processor watchdog module

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
This block configures the counter reset source of the watchdog module on the processor. The
watchdog module, after configuration, resets the system if not serviced periodically.

Ports
Input

Input — Resets watchdog counter
scalar

When the input signal is 1, the counter is reset.

Dependencies

This parameter appears only when Watchdog counter reset source is set to Input port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Parameters
Watchdog counter reset source — Watchdog counter reset source
Specify via dialog (default) | Input port

The watchdog counter reset source.

• Input — Create an input port on the watchdog block. When the input signal is 1, the counter is
reset.

2 Blocks

2-206

• Specify via dialog — The watchdog timer is reset based on the Sample time value.

Sample time — Frequency at which processor resets Watchdog timer
–1 (default) | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this parameter to -1.

Dependencies

This parameter appears only when Watchdog counter reset source is set to Specify via
dialog.

See Also
C28x Hardware Interrupt

 C28x Watchdog

2-207

C28x eCAN Receive
Enhanced Controller Area Network receive mailbox

Libraries:
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
The eCAN Receive block generates source code for receiving enhanced Controller Area Network
(eCAN) messages through an eCAN mailbox. eCAN modules on the processor provide serial
communication capability and have 32 mailboxes configurable for receive or transmit. The block
supports eCAN data frames in standard or extended format.

To use the eCAN Receive block with the eCAN Pack block in the canmsglib library, set Data type to
CAN_MESSAGE_TYPE.

Configure the eCAN modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the requirements
of your application.

Ports
Output

f() — Function call port
scalar

Connect a function call subsystem to this port. When a new message is received, the subsystem is
executed.

Msg — Message data port
vector

The received data is output in the form of a vector of elements of the selected data type. The length of
the vector is 8 bytes. When the block is used in polling mode, and a new message is not created
between consecutive executions of the block, the existing message is repeated.

2 Blocks

2-208

To use the eCAN Receive block with the CAN Unpack block in the canmsglib library, set Data type
to CAN_MESSAGE_TYPE.
Data Types: uint8 | uint16 | uint32 | CAN_MESSAGE_TYPE

len — Length of output message
scalar

The length of output message received in bytes.

Dependencies

This port appears only if the Output message length parameter is selected.
Data Types: uint16

ID — Output message identifier
scalar

The port outputs message identifier of received message.

Dependencies

To enable this port, select Output message ID parameter.
Data Types: uint32

Parameters
Module — eCAN module the block configures
eCAN_A (default) | eCAN_B

Determines the eCAN module configured by the eCAN Receive block.

Mailbox number(0–31) — Sets value of mailbox number register (MBNR)
0 (default) | integer in the range [0 31]

For standard CAN controller (SCC) mode, enter a unique number from 0 to 15. For high-end CAN
controller (HECC) mode, enter a unique number from 0 to 31 . In SCC mode, transmissions from the
mailbox with the highest number have the highest priority. In HECC mode, the mailbox number only
determines priority if the transmit priority level (TPL) of two mailboxes is equal.

Note In a model, the same mailbox number cannot be used by either eCAN Transmit block or other
eCAN Receive blocks.

Message identifier — Sets value of message identifier register (MID)
bin2dec('111000111') (default) | numeric identifier of length 11 or 29 bits

The message identifier is 11 bits long for the standard frame size or 29 bits long for the extended
frame size in decimal, binary, or hex format. For binary and hex formats, use bin2dec(' ') and
hex2dec(' '), respectively, to convert the entry.

Message type — Message identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

 C28x eCAN Receive

2-209

The message identifier type.

Enable acceptance filter — Enable to use ID filtering
off (default) | on

Enable this parameter to use ID filtering. ID filtering depends on Message type (Standard or
extended) , Message identifier and Message identifier mask.

eCAN module scans the received message ID's and compares it with the filter mask. Received
messages which pass the acceptance filtering are stored into the message RAM.

Note Acceptance filtering in self test mode is only supported for specific processors. F2805x/F2806x
and older processors does not support acceptance filtering in self test mode.

Message identifier mask — identifier mask
0 (default) | 1 | numeric identifier of length 11 or 29 bits

The Message identifier mask is 11 bits long for the standard frame size or 29 bits long for the
extended frame size in decimal, binary, or hex format. For binary and hex formats, use bin2dec('
') and hex2dec(' '), respectively, to convert the entry.

• 0 - if the bit in Message identifier mask is set to 0, then corresponding bit in the Message
identifier will not be considered for acceptance filtering.

• 1 - if the bit in Message identifier mask is set to 1, then corresponding bit in the Message
identifier will be considered for acceptance filtering.

Dependencies

To enable Message identifier mask parameter, select Enable acceptance filter.

Sample time — Frequency at which mailbox is polled for new message
1 (default) | -1 | scalar

A new message causes a function call to be sent from the mailbox. If you want to update the message
output only when a new message arrives, the block needs to be executed asynchronously. To execute
the block asynchronously, set this parameter to -1, and select the Post interrupt when message is
received option.

Note For information about setting the timing parameters of the CAN module, see “Configuring
Timing Parameters for CAN Blocks”.

Data type — Output message data type
uint16 (default) | uint8 | uint32 | CAN_MESSAGE_TYPE

The options available are:

• uint8: Vector length = 8 elements
• uint16: Vector length = 4 elements
• uint32: Vector length = 2 elements
• CAN_MESSAGE_TYPE: Outputs data as a structure. Use the CAN Unpack block to extract the data

from the structure.

2 Blocks

2-210

The length of the vector for the received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. The data are unpacked as follows using
the data buffer, which is 8 bytes.

For uint8 data, the eCAN Receive block reads each unit of 8 bytes in the registers and outputs 8-bit
data to eight elements (using the lower part of the 16-bit memory).

Output[0] = data_buffer[0];
Output[1] = data_buffer[1];
Output[2] = data_buffer[2];
Output[3] = data_buffer[3];
Output[4] = data_buffer[4];
Output[5] = data_buffer[5];
Output[6] = data_buffer[6];
Output[7] = data_buffer[7];

For uint16 data, the eCAN Receive block reads each unit of 8 bytes in the registers and outputs 16-
bit data to four elements.

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data, the eCAN Receive block reads each unit of 8 bytes in the registers and outputs 32-
bit data to two elements.

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

The uint16 output is:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

When you select CAN_MESSAGE_TYPE, the block outputs the following struct data (defined in
can_message.h):

struct {

 /* Is Extended frame */
 uint8_T Extended;

 /* Length */
 uint8_T Length;

 /* RTR */
 uint8_T Remote;

 /* Error */
 uint8_T Error;

 /* CAN ID */
 uint32_T ID;

 /*

 C28x eCAN Receive

2-211

 TIMESTAMP_NOT_REQUIRED is a macro that will be defined by Target teams
 PIL, if they do not require the timestamp field during code
 generation. By default, timestamp is defined. If the targets do not require
 the timestamp field, they should define the macro TIMESTAMP_NOT_REQUIRED before
 including this header file for code generation.
 */
 #ifndef TIMESTAMP_NOT_REQUIRED
 /* Timestamp */
 double Timestamp;
 #endif

 /* Data field */
 uint8_T Data[8];

};

Limitations

The following are the limitations when Data type is set as CAN_MESSAGE_TYPE.

• CAN unpack status can be used for data validity only when CAN unpack is directly connected to
eCAN Receive block without function trigger and Action when message not received to
Reset all fields to zero.

• CAN unpack status will not be valid in any case if Action when message not received of eCAN
Receive block is set to Output last received values.

• Always use function trigger as indication of status with or without CAN unpack block for all
scenarios.

Initial output — Sets output before receiving data
0 (default) | integer

The value of the output before receiving data. You can specify the initial output values based on the
Data type selected.

Action when message not received — Action when no new CAN message received
Output last message received (default) | Reset all fields to zero

Select an action when no new CAN message is received. You can either choose Output last
message received or Reset all fields to zero.

Output message ID — Output message identifier status
off (default) | on

When you select the Output message ID parameter, the block configures an output port, ID. The
port outputs the status of output message identifier.

Dependencies

To enable Output message ID, select Enable acceptance filter.

Output message length — Output message length in bytes
off (default) | on

The message length in bytes, sent to the len port. If not selected, the len port is not visible.

Post interrupt when message is received — Posts asynchronous interrupt when message is
received
off (default) | on

When selected, the block posts an asynchronous interrupt when a message is received.

2 Blocks

2-212

Interrupt line — Interrupt line of asynchronous interrupt
0 (default) | 1

The interrupt line the asynchronous interrupt uses. The value of this parameter sets bit 2 (GIL) in the
global interrupt mask register (CANGIM):

• 1 maps the global interrupts to the ECAN1INT line.
• 0 maps the global interrupts to the ECAN0INT line.

Dependencies

This parameter appears only when you select Post interrupt when message is received.

See Also
C28x eCAN Transmit | C28x Hardware Interrupt

 C28x eCAN Receive

2-213

C28x eCAN Transmit
Enhanced Controller Area Network transmit mailbox

Libraries:
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
The eCAN Transmit block generates source code for transmitting enhanced Controller Area Network
(eCAN) messages through an eCAN mailbox. eCAN modules on the processor provide serial
communication capability and have 32 mailboxes configurable for receive or transmit. This block
supports eCAN data frames in standard or extended format.

Note Fixed-point inputs are not supported by this block.

Configure the eCAN modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the requirements
of your application.

Ports
Input

Msg — Message data
vector

Input message data.
Data Types: uint8 | uint16 | uint32 | CAN_MESSAGE_TYPE

Parameters
Module — eCAN module the block configures
eCAN_A (default) | eCAN_B

2 Blocks

2-214

Determines the eCAN module configured by this instance of the eCAN Transmit block.

Mailbox number(0–31) — Sets value of mailbox number register (MBNR)
1 (default) | integer in the range [0 31]

A unique number from 0 to 15 for standard or from 0 to 31 for enhanced CAN mode. The number
refers to a mailbox area in RAM. In standard mode, the mailbox number determines priority.

Note In a model, multiple eCAN Transmit blocks can have a same Mailbox number. But the same
mailbox number cannot be used by eCAN Receive block.

Message identifier — Value of message identifier register (MID)
bin2dec('111000111') (default) | numeric identifier of length 11 or 29 bits

The message identifier is 11 bits long for the standard frame size or 29 bits long for the extended
frame size in decimal, binary, or hex. For binary and hex formats, use bin2dec(' ') and
hex2dec(' '), respectively, to convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Note CAN messages use the value of the message identifier parameter in the CAN Pack block for
transmission when it is used with C28x CAN Transmit block to create the CAN message.

Message type — Message identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

The message identifier type.

Enable blocking mode — Sets blocking mode
off (default) | on

If selected, the CAN block waits indefinitely for a transmit (XMT) acknowledgment. If not selected,
the CAN block does not wait for a transmit (XMT) acknowledgment, which is useful if the hardware
fails to acknowledge transmissions.

Post interrupt when message is transmitted — Posts asynchronous interrupt when message is
transmitted
off (default) | on

When selected, this block posts an asynchronous interrupt when data is transmitted.

Interrupt Line — Interrupt line of asynchronous interrupt
0 (default) | 1

The interrupt line the asynchronous interrupt uses. The value of this parameter sets bit 2 (GIL) in the
global interrupt mask register (CANGIM):

• 1 maps the global interrupts to the ECAN1INT line.
• 0 maps the global interrupts to the ECAN0INT line.

Note For information about setting the timing parameters of the CAN module, see “Configuring
Timing Parameters for CAN Blocks”.

 C28x eCAN Transmit

2-215

Dependencies

This parameter appears only when Post interrupt when message is transmitted is selected.

More About
Data Vectors

The length of the vector for each transmitted mailbox message is 8 bytes. Input data are right-aligned
in the message data buffer. The uint8 (vector length = 8 elements), uint16 (vector length = 4
elements), and uint32 (vector length = 2 elements) data types are accepted. While using the eCAN
Transmit block with the CAN Pack block in the canmsglib library, CAN_MESSAGE_TYPE is also
accepted.

The following examples show how different types of input data are aligned in the data buffer:

For input of data type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of data type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of data type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56

2 Blocks

2-216

data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

See Also
C28x eCAN Receive | C28x Hardware Interrupt

 C28x eCAN Transmit

2-217

C28x eQEP
Quadrature encoder pulse block used to derive position, direction, and speed

Libraries:
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
The enhanced quadrature encoder pulse (eQEP) block is used along with a linear or rotary
incremental encoder to get position, direction, and speed information from a rotating machine.

The eQEP peripheral module inputs include QEPA, QEPB, QEPI (index), and QEPS (strobe).

To configure your device to work with the block, navigate to Model Configuration Parameters >
Hardware Implementation, select your device at Hardware board, and expand Target hardware
resources.

Input/Output Ports
Input

swi — Dynamically update initialization value for position counter
scalar

If the input is true, the position counter is initialized to the value in the Initialization value
(0~4294967295) on page 2-0 parameter.

Dependencies

This port appears only when, in the Position counter tab, you select Enable software
initialization and set Software initialization source to Input port.
Data Types: Boolean

cmp — Value for comparing position
scalar

2 Blocks

2-218

Input value that generates the position compare sync signal.

Dependencies

This port appears only when, in the Compare output tab, you select Enable position-compare
sync signal output and set Compare value source to Input port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

iel — Software index marker
scalar

Software index event marker for latching the position counter.

Dependencies

This port appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or Reset on
the first index event.

• You select Output latch position counter on index event.
• You set Index event latch of position counter to Software index marker via input

port.

Note In Compare output tab, if Sync output pin selection is set to Index pin is used for
sync output, then the Index event latch of position counter parameter cannot be set to
Software index marker via input port.

Data Types: Boolean

Output

qposcnt — Position counter signal
scalar

Position counter signal (PCSOUT) received from the position counter and control unit (PCCU).

Dependencies

This port appears only when, in the Position counter tab, you select Output position counter.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

pcef — Position counter error flag on error
scalar

Outputs the position counter error flag on an error.

• 0 — No error occurred during the last index transition.
• 1 — Position counter error.

Dependencies

This port appears only when, in the Position counter tab:

 C28x eQEP

2-219

• You set Position counter reset mode to Reset on an index event.
• You select Output position counter error flag.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qdf — Direction flag of quadrature module
scalar

Direction flag of the quadrature module.

• 0 — counterclockwise rotation (or reverse movement).
• 1 — clockwise rotation (or forward movement).

Dependencies

This port appears only when, in the General tab, you select Quadrature direction flag output
port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qctmr — Capture timer signal
scalar

Outputs the eQEP capture timer signal.
Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Output capture timer.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qcprd — Capture period signal
scalar

Outputs the capture period signal, which holds the period count value between the last successive
eQEP position events.
Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Output capture period timer.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

coef — eQEP overflow error flag
scalar

Outputs overflow error flag (COEF flag) in the event of capture timer overflow between unit position
events.

• 0 — Overflow has not occurred.
• 1 — Overflow occurred in the eQEP capture timer register (QEPCTMR).

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Enable and output overflow error flag.

2 Blocks

2-220

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

cdef — Direction change error flag
scalar

Outputs the direction change error flag.

• 0 — Capture direction error has not occurred.
• 1 — Direction change occurred between two capture position events.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Enable and output direction change error flag.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qctmrlat — Capture timer latched value
scalar

Outputs the capture timer latched value from the QCTMRLAT register.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Output capture timer latched value.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qcprdlat — Capture timer period latched value
scalar

Outputs the capture timer period latched value from the QCPRDLAT register.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Output capture timer period latched value.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qposlat — Position counter latched value
scalar

Outputs position counter latched value from the QPOSLAT register.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP capture and
Output position counter latched value.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qposilat — Latches position counter on index event
scalar

eQEP index input can be configured to latch the position counter register (QPOSCNT) as output on
the occurrence of a definite event on this pin.

 C28x eQEP

2-221

Dependencies

This port appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or Reset on
the first index event.

• You select Output latch position counter on index event.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

qposslat — Latches position counter on strobe event
scalar

eQEP strobe input can be configured to latch the position counter register (QPOSCNT) as output on
the occurrence of a definite event on this pin.
Dependencies

This port appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or Reset on
the first index event.

• You select Output latch position counter on strobe event.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double | Boolean

Parameters
General

Module — eQEP module to obtain position, direction, and speed
eQEP1 (default) | eQEP2 | eQEP3

The eQEP peripheral module used to obtain position, direction, and speed information. The number of
eQEP modules supported varies for different C2000 processors.

Position counter mode — Mode that matches how input to eQEP peripheral is encoded
Quadrature-count (default) | Direction-count | Up-count | Down-count

The eQEP peripheral inputs are QEPA, QEPB, QEPI, and QEPS. Configure the GPIO pins for these
inputs by navigating to Configuration Parameters > Hardware Implementation > Target
hardware resources > eQEP.

Input signals QEPA and QEPB to the eQEP peripheral are processed by the quadrature decoder unit
(QDU) in the eQEP peripheral to produce clock (QCLK) and direction (QDIR) signals. Choose the
position counter mode that matches the way the input to the eQEP module is encoded:

• Quadrature-count — Two square signals (A and B) 90 degrees out of phase are sent to the
eQEP peripheral. The QDU uses the phase relationship of these two inputs to generate quadrature
clock and direction signals.

• Direction-count — Direction and clock signals are directly sent to the eQEP peripheral. The
QEPA pin provides the clock input, and the QEPB pin provides the direction input.

• Up-count — The position counter is used to measure the frequency of the signal in the QEPA pin.
The direction is hard-wired for up count in this mode.

2 Blocks

2-222

• Down-count — The position counter is used to measure the frequency of the signal in the QEPA
pin. The direction is hard-wired for down count in this mode.

Positive rotation — Direction of rotation
Clockwise (default) | Counterclockwise

Set the direction of rotation.

If Clockwise is selected, the quadrature count operation is performed without swapping the
quadrature clock inputs fed to the QDU.

If Counterclockwise is selected, reverse counting is performed by swapping the quadrature clock
inputs fed to the QDU. The quadrature decoder reverses the counting direction.
Dependencies

This parameter appears only when you set Position counter mode to Quadrature-count on the
General tab.

External clock rate — Measurement resolution
2x resolution: Count the rising/falling edge (default) | 1x resolution: Count the
rising edge only

Select the resolution of the clock generator that the position counter uses as input so that the
counting occurs on both rising and falling edges of the QEPA input or on the rising edge
only. Choosing the former increases the measurement resolution by a factor of 2.
Dependencies

This parameter appears only when you set Position counter mode to Direction-count, Up-
count, or Down-count.

Quadrature direction flag output port — Creates port for direction flag
off (default) | on

Creates a port (qdf) on the block that gives the direction flag of the quadrature module.
Dependencies

This parameter appears only when, in the General tab, Position counter mode is set to
Quadrature-count.

Invert input QEPxX polarity — Inverts polarity of eQEP input
off (default) | on

Inverts the polarity of the eQEP peripheral inputs. The Invert input QEPxA polarity checkbox
corresponds to QEPA, Invert input QEPxB polairty corresponds to QEPB, and so on.

Index pulse gating option — Enables gating of index pulse with strobe input
off (default) | on

Enables the gating of the peripheral input index signal with the peripheral input strobe signal. In this
case, the internal index signal is high only when both the peripheral input signals eQEPxI and
eQEPxS are high.

Sample time — Frequency at which block reads position counter
0.0001 (default) | -1 | scalar

 C28x eQEP

2-223

Sample time for the block in seconds. To execute this block asynchronously, set this parameter to -1.

Position counter

Output position counter — Outputs position counter signal
on (default) | off

Outputs the position counter signal PCSOUT from the position counter and control unit (PCCU). The
position counter register counts up or down on every eQEP pulse based on the direction of the input.
The count value is proportional to the position from a given reference point.

Maximum position counter value (0~4294967295) — Specifies maximum position counter value
4294967295 (default) | integer in [0, 4,294,967,295]

Enter a maximum value (QPOSMAX) for the position counter. If the position counter reaches
QPOSMAX, the position counter is set to 0 on the next increment of the counter. If the position
counter is 0, the position counter is set to QPOSMAX on the next decrement of the counter.

Enable set to init value on index event — Enables option to set initialization value for position
counter
off (default) | on

Enables option to set the position counter to its initialization value on an index event.

Set to init value on index event — Initialization value for position counter
Rising edge (default) | Falling edge

Sets the position counter to its initialization value on the rising edge or falling edge of the index
event.

Dependencies

This parameter appears only when, in the Position counter tab, you select Enable set to init value
on index event.

Enable set to init value on strobe event — Enables option to set initialization value for position
counter
off (default) | on

Enables option to set the position counter to its initialization value on a strobe event.

Set to init value on strobe event — Sets initialization value for position counter
Rising edge (default) | Depending on direction

The Rising edge option sets the position counter to its initialization value on the rising edge of the
strobe input. The Depending on direction option sets the position counter to its initialization
value on the:

• rising edge of the strobe input, in the forward direction.
• falling edge of the strobe input, in the reverse direction.

Dependencies

This parameter appears only when, in the Position counter tab, you select Enable set to init value
on strobe event.

2 Blocks

2-224

Enable software initialization — Enables option to set initialization value for position counter
off (default) | on

Allows the position counter to be set to its initialization value using the software.

Software initialization source — Specifies initialization source of position counter
Input port (default) | Set to init value at start up

Choose the Set to init value at start up option to initialize the position counter to the value
entered in Initialization value at the start of the execution of the program. Choose the Input port
option to update the initialization value dynamically based on an input initialization signal (input port
swi). If the input swi is true, the position counter is initialized to the Initialization value.

Dependencies

This parameter appears only when, in the Position counter tab, you select Enable software
initialization.

Initialization value (0~4294967295) — Initialization value for position counter
2147483648 | integer in [0, 4,294,967,295]

Enter the initialization value for the position counter.

Dependencies

This parameter appears only when you select Enable set to init value on index event, Enable set
to init value on strobe event, or Enable software initialization.

Position counter reset mode — Resets position counter
Reset on an index event (default) | Reset on the maximum position | Reset on the
first index event | Reset on a time unit event

Position counter reset mode, depending on the nature of the system the eQEP module is working
with.

• Reset on an index event — If the index event occurs during the forward direction, then the
position counter is reset to 0 on the next eQEP clock. If the index event occurs during the reverse
direction, then the position counter is reset to the value in the QPOSMAX register on the next
eQEP clock.

• Reset on the maximum position — During the forward direction, when the position counter
is equal to QPOSMAX, the position counter is reset to 0 on the next eQEP clock, and the position
counter overflow flag is set. During the reverse direction, when the position counter is equal to 0,
the position counter is reset to QPOSMAX on the next QEP clock, and the position counter
underflow flag is set.

• Reset on the first index event — If the index event occurs during the forward direction,
the position counter is reset to 0 on the next eQEP clock. If the index event occurs during the
reverse direction, the position counter is reset to the value in the QPOSMAX register on the next
eQEP clock. The position counter is reset using the Reset on the first index event option
only on the first index event occurrence. After the first index event occurrence, the position
counter is reset based on the maximum position.

• Reset on a unit time event — The QPOSCNT value is latched to the QPOSLAT register on a
unit time event. The QPOSCNT register is then reset to 0 for the forward direction and QPOSMAX
for the reverse direction. You can use this option for frequency measurement.

 C28x eQEP

2-225

Output position counter error flag — Outputs position counter error flag on error
off (default) | on

Outputs the position counter error flag on error. When you select this option, the output port pcef is
created.

Dependencies

This parameter appears only when, in the Position counter tab, you set Position counter reset
mode to Reset on an index event.

Output latch position counter on index event — Latches position counter on index event
off (default) | on

When this option is enabled, the position counter QPOSCNT latches into QPOSLAT on the occurrence
of an event on the strobe pin.

Dependencies

This parameter appears only when, in the Position counter tab, you set Position counter reset
mode to Reset on the maximum position or Reset on the first index event.

Index event latch of position counter — Configures position counter to latch on an event
Rising edge (default) | Falling edge | Software index marker via input port

Configures the eQEP position counter to latch on the index event selected.

Dependencies

This parameter appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or Reset on
the first index event.

• You select Output latch position counter on index event.

Output latch position counter on strobe event — Latches position counter on strobe event
off (default) | on

The eQEP strobe input can be configured to latch the position counter (QPOSCNT) into QPOSSLAT on
occurrence of a definite event on this pin. This option latches the position counter on each strobe
event.

Dependencies

This parameter appears only when, in the Position counter tab, you set Position counter reset
mode to Reset on the maximum position or Reset on the first index event.

Strobe event of latched position counter — Configures position counter to latch on strobe
Rising edge (default) | Depending on direction

Rising edge latches on the rising edge of the strobe event input. Depending on direction
latches on the rising edge in the forward direction and the falling edge in the reverse direction.

Dependencies

This parameter appears only when, in the Position counter tab:

2 Blocks

2-226

• You set Position counter reset mode to Reset on the maximum position or Reset on
the first index event.

• You select Output latch position counter on strobe event.

Speed calculation

To view the other parameters of this tab, select the Enable QEP capture option.

Enable QEP capture — Enables edge capture unit
off (default) | on

The eQEP peripheral includes an integrated edge capture unit to measure the elapsed time between
the unit position events. This option enables the edge capture unit.

Output capture timer — Outputs capture timer
off (default) | on

Outputs the capture timer value from the QCTMR register.

Output capture period timer — Outputs capture period
off (default) | on

Outputs the period count value between the last successive eQEP position events from the QCPRD
register.

eQEP capture timer prescaler — Prescales capture timer clock frequency
128 (default) | 1 | 2 | 4 | 8 | 16 | 32 | 64

The eQEP capture timer runs from prescaled SYSCLKOUT. The capture timer clock frequency is the
frequency of SYSCLKOUT divided by the value you choose for this parameter.

Unit position event prescaler — Prescales quadrature clock
128 (default) | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 256 | 512 | 1024 | 2048

The timing of the unit position event is determined by prescaling the quadrature clock (QCLK). QCLK
is divided by the prescalar value you choose for this parameter.

Enable and output overflow error flag — Outputs overflow error flag when capture timer overflows
off (default) | on

Enables and outputs the eQEP overflow error flag (COEF) in the event of capture timer overflow
between unit position events.

Enable and output direction change error flag — Outputs direction change error flag
off (default) | on

Enables and outputs the direction change error flag (CDEF) when direction change occurs between
the unit position events.

Capture timer and position — QEP capture latch mode
On position counter read (default) | On unit time-out event

Event that triggers the latching of the capture timer and capture period register:

 C28x eQEP

2-227

• On position counter read — Latch on position counter read by the processor. The capture
timer and capture period values are latched into the QCTMRLAT and QCPRDLAT registers when
the processor reads the QPOSCNT register.

• On unit time-out event — Latch on unit time-out. The position counter, capture timer, and
capture period values are latched into the QPOSLAT, QCTMRLAT, and QCPRDLAT registers on
unit time-out.

Unit timer period (0~4294967295) — Sets unit timer period
100000000 (default) | value in the range [0, 4,294,967,295]

Set the unit timer period.

Dependencies

This parameter appears only when you set Capture timer and position to On unit time-out
event.

Output capture timer latched value — Outputs capture timer latched value
off (default) | on

Outputs the capture timer latched value from the QCTMRLAT register at the output port qctmrlat.

Output capture timer period latched value — Outputs capture timer period latched value
off (default) | on

Outputs the capture timer period latched value from the QCPRDLAT register at the output port
qcprdlat.

Output position counter latched value — Outputs position counter latched value
off (default) | on

Outputs the position counter latched value from the QPOSLAT register at the output port qposlat.

Compare output

To view the other parameters of this tab, select the Enable position-compare sync signal output
option.

Enable position-compare sync signal output — Enables position compare sync signal output
off (default) | on

The eQEP peripheral includes a position compare unit that generates the position compare sync
signal when the position counter register (QPOSCNT) and the position compare register (QPOSCMP)
values match. This option enables the position compare sync signal output. The sync signal can be
output using an index pin or strobe pin of the eQEP peripheral.

Sync output pin selection — GPIO pin used for sync signal
Index pin is used for sync output (default) | Strobe pin is used for sync output

The GPIO pin used for the sync signal output. Use the index pin or strobe pin of the eQEP peripheral
to output the position compare sync signal.

Compare value source — Source of value for position comparison
Specify via dialog (default) | Input port

2 Blocks

2-228

Source of the value to be used for the position compare register (QPOSCMP). When this parameter is
set to Input port the input port cmp is created.

Position compare shadow load mode — Shadow mode for generating position compare sync signal
Load on QPOSCNT=0 (default) | Shadow disabled(load immediate) | Load on
QPOSCNT=QPOSCMP

This parameter lets you enable or disable shadow mode for updating the position compare
(QPOSCMP) register. When shadow mode is enabled, you can also choose an event to trigger the
loading of the shadow register value into the active register. When shadow mode is disabled, the
processor directly loads the value into the active register.

Load on QPOSCNT=0 loads on a position counter zero event, and Load on QPOSCNT=QPOSCMP
loads when the QPOSCNT and QPOSCMP values match. When you select these options, shadow mode
is enabled.

Position compare value (0~4294967295) — Value for comparing postiton
4294967295 (default) | value in the range [0, 4,294,967,295]

This value is loaded into the position compare register (QPOSCMP).

Dependencies

This parameter appears only when you set Compare value source to Specify via dialog.

Sync output pulse width (1~4096) — Pulse width of position compare sync output signal
1 (default) | value in the range [0, 4,096]

The pulse stretcher logic in the position compare unit generates a programmable position compare
sync pulse output on the position compare match.

A value from 1 to 4096 that determines the pulse width of the position compare sync output signal.
The width of the output pulse, measured in SYSCKOUT cycles, is four times the entered value.

Polarity of sync output — Polarity of sync output
Active high (default) | Active low

Select the polarity of the sync output signal generated.

Watchdog unit

Watchdog timer enable — Enables watchdog time-out flag
off (default) | on

The eQEP peripheral contains a watchdog timer that monitors the quadrature clock to indicate that
the motion-control system is operating. The timer is reset on an edge transition of the quadrature
clock. The watchdog unit generates an interrupt, which you can enable in the Interrupt tab.

Watchdog timer — Time-out value for watchdog timer
65535 (default) | value in the range [0, 65,535]

The time period after which the watchdog unit generates an interrupt.

Dependencies

This parameter appears only when you select Watchdog timer enable.

 C28x eQEP

2-229

Signal Data Types

When you select signals as output in the other tabs, the corresponding signals appear in this tab. For
example, when you select the Output position counter option on the Position counter tab, the
Position counter value data type option appears on this tab. Using this tab, you can select the data
types of the signals.

The valid data types are auto, double, single, int8, uint8, int16, uint16, int32, uint32, and
boolean.

The following table summarizes the options for which you can set the data type in the Signal data
types tab:

Pane Option
General Quadrature direction flag output port
Position counter Output position counter (selected by default)

Output position counter error flag
Output latch position counter on index event
Output latch position counter on strobe event

Speed calculation Output capture timer
Output capture period timer
Enable and output overflow error flag
Enable and output direction change error flag
Output capture timer latched value
Output capture timer period latched value
Output position counter latched value

Interrupt

Interrupts corresponding to specific events are enabled or disabled based on the settings in this tab.
The generated interrupts are used with the C28x Hardware Interrupt.

Position counter error interrupt enable — Enables position counter error interrupts
off (default) | on

Enables position counter error interrupts. The position counter interrupt is generated only in index
event reset mode. When eQEP is configured in this mode, the position counter value is latched to the
QPOSILAT register, and the direction information is recorded on every index event marker. If the
latched value is not equal to 0 or QPOSMAX, the position counter error interrupt is generated.

Quadrature phase error interrupt enable — Enables quadrature phase error interrupts
off (default) | on

Enables quadrature phase error interrupts. In quadrature count mode, the quadrature inputs QEPA
and QEPB are expected to be 90 degrees out of phase. The quadrature phase error interrupt is
generated when edge transition is detected simultaneously on the QEPA and QEPB signals.

Quadrature direction change interrupt enable — Enables quadrature direction change interrupt
off (default) | on

2 Blocks

2-230

When the direction of counting changes, the quadrature direction change interrupt is generated.

Watchdog timeout interrupt enable — Enables watchdog timeout interrupts
off (default) | on

The eQEP peripheral contains a watchdog timer that monitors the quadrature clock. If no quadrature
clock event is detected until the watchdog timer matches the watchdog period, time-out occurs and
the watchdog timeout interrupt is generated.

Position counter underflow interrupt enable — Enables position counter underflow interrupts
off (default) | on

Enables position counter underflow interrupts. In the reverse direction, if the position counter
reaches 0, then the position counter is reset to QPOSMAX on the next QEP clock and the position
counter underflow interrupt is generated.

Position counter overflow interrupt enable — Enables position counter overflow interrupts
off (default) | on

Enables position counter overflow interrupts. In the forward direction, if the position counter reaches
QPOSMAX, the position counter is reset to 0 on the next QEP clock, and the position counter overflow
interrupt is generated.

Position-compare ready interrupt enable — Enables position compare ready interrupts
off (default) | on

Enables position compare ready interrupts. When the position compare register is configured for
shadow mode, the position compare ready interrupt is generated after the shadow register value is
loaded into the active register.

Position-compare match interrupt enable — Enables position compare match interrupts
off (default) | on

Enables position compare match interrupts. The position compare match interrupt is generated when
the position counter value QPOSCNT matches with the active position compare register QPOSCMP.

Strobe event latch interrupt enable — Enables strobe event latch interrupts
off (default) | on

Enables strobe event latch interrupts. The strobe event latch interrupt is generated when the position
counter is latched to the QPOSSLAT register during a strobe event latch.

Index event latch interrupt enable — Enables index event latch interrupts
off (default) | on

Enables index event latch interrupts. The strobe event latch interrupt is generated when the position
counter is latched to the QPOSILAT register during an index event latch.

Unit timeout interrupt enable — Enables unit timeout interrupts
off (default) | on

Enables unit timeout interrupts. The unit time-out interrupt is generated when the unit timer matches
the unit period.

 C28x eQEP

2-231

C28x CLA Task
Create CLA task that executes downstream function-call subsystem on CLA core

Libraries:
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
The CLA Task block creates a (Control Law Accelerator) CLA task that executes a downstream
function-call subsystem on the CLA core. CLA is a coprocessor that allows parallel processing.
Utilizing the CLA for time-critical tasks frees up the main CPU to perform other system and
communication functions concurrently.

You can specify the interrupt source to trigger the CLA task. You can create up to eight CLA tasks to
execute on the CLA core.

For information about how to configure a CLA block to execute a downstream function-call
subsystem, see “Overview of CLA Configuration for C2000 Processors Using Subsystem”.

Ports
Output

Port_1 — Function-call signal to a function-call subsystem or function-call model
scalar

The output triggers the CLA task that executes a downstream function-call subsystem on the CLA
core.

Parameters
CLA task number — CLA task number executed on CLA core
1 (default) | integer in [1, 8]

The CLA task number that you want to execute on the CLA core.

CLA task trigger source — Source of CLA task trigger
Software (default) | peripheral interrupt

The software or peripheral interrupt source that triggers the CLA task to execute on the CLA core.

2 Blocks

2-232

Wait until completion of task — Block C28x execution until CLA task is completed
off (default) | on

Select the parameter Wait until completion of task, for the software source to trigger the CLA
task.

Enabling this will halt the C28x execution until all the pending CLA tasks are completed.

Dependencies

To enable this parameter, set the CLA task trigger source parameter as software.

Sample time — Frequency at which function-call subsystem is triggered
0.2 (default) | -1 | scalar

Set the frequency at which the function-call subsystem is triggered by the CLA task trigger source.
To execute this block asynchronously, set this parameter to -1.

Dependencies

To enable this parameter, select the Software option in the CLA task trigger source.

Version History
Introduced in R2016b

See Also
CLA Subsystem | “Overview of CLA Configuration for C2000 Processors Using Subsystem”

 C28x CLA Task

2-233

c280x/C2802x/C2803x/C2805x/C2806x/C2833x/
C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F28004x/F28002x/F28003x ePWM
Generate enhanced Pulse Width Modulated (ePWM) waveforms

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M36x / C28x

Description
Configures the Type 1 to Type 4 enhanced Pulse Width Modulator (ePWM) to generate PWM
waveforms. The number of available ePWM modules (ePWM1-ePWM16) vary between C2000
processors. For more information on ePWM type, refer to C2000 Real-Time Control Peripheral
Reference Guide.

Use this block to generate ePWM waveforms. Multiple ePWM modules are available on C28x devices.
Each module generates two PWM signals ePWMA and ePWMB.

When you enable the high-resolution pulse width modulator (HRPWM), the ePWM block uses the
scale factor optimizing (SFO) software library. The SFO library can “dynamically determine the
number of micro edge positioner (MEP) steps per system clock (SYSCLKOUT) period.” For more
information, see TMS320x28xx, 28xxx High-Resolution Pulse Width Modulator (HRPWM)
Reference Guide, available on the Texas Instruments web site.

This block is common to various C28x devices. Available parameters vary based on the library from
which you select the block. The blue label on the top right corner of the block displays the family. As
the block is a superset of functionalities available on different devices, not all parameters will be
relevant to your model.

2 Blocks

2-234

Parameters
General

Allow use of 16 HRPWMs (for C28044) instead of 6 PWMs — Enable HRPWM when PWM
resolution is too low
off (default) | on

Enable all 16 high-resolution PWM modules (HRPWM) on the C28044 digital signal controller when
the PWM resolution is too low.

Note Select this parameter only if you are using a C28044 processor.

For example, the Spectrum Digital eZdsp™ F28044 board has a system clock of 100 MHz (200-kHz
switching). At these frequencies, conventional PWM resolution is too low, approximately 9 bits or 10
bits. By comparison, the HRPWM resolution for the same board is 14.8 bits.
Dependencies

When you enable this parameter:

• Use the HRPWM parameters under the ePWMA tab to make additional configuration changes.
• Most of the configuration parameters under the ePWMB tab are unavailable.
• Your model can contain up to 16 C280x/C2803x/C2833x ePWM blocks, provided you configure

each one for a separate module. (For example, Module is ePWM1, ePWM2, and so on.)
• Select this parameter only if you are using a C28044 processor. To enable HRPWM for other

processors, first determine how many HRPWM modules are available by consulting the Texas
Instruments documentation for your processor. Then use the HRPWM parameters under the
ePWMA tab to enable and configure the HRPWM.

Module — Indicates which ePWM module to use
ePWM1 (default) | ePWM2 | ePWM3 | …

Select the appropriate ePWM module. ePWMx, where x can be 1,2,3....

Note Number of module available will vary for different processors.

ePWMLink TBPRD — Indicates TBPRD linking of ePWM module
Not Linked (default) | ePWM2 | ePWM3 | …

Select an ePWM module to which you want to link the current ePWM module for timer period. When
you link the two modules, the timer period value in the linked ePWM module sets the value of the
Timer period parameter in the current module. The Timer period units, Specify timer period
via , and the Timer period parameters do not show when you select linking to another ePWM
module.

However, the linking has no effect when you link an ePWM module to a module that does not exist in
your model.

Note This parameter is available only with some TI C2000™ processors.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-235

Timer period units — Indicates time period units
Clock cycles (default) | Seconds

Specify the units of the Timer period or Timer initial period parameters in Clock cycles or
Seconds. When the parameter is set to Seconds, the software converts the Timer period or Timer
initial period from a value in seconds to a value in clock cycles. For best results, select Clock
cycles. Doing so reduces the number of calculations and rounding errors.

Dependencies

• If you set Timer period units to Seconds, enable support for floating-point numbers. In the
model window, select Modeling > Model Settings.

• In the Configuration Parameters dialog box, select Code Generation > Interface. Under
Software Environment, enable floating-point numbers.

Specify timer period via — Configure source of timer period value
Specify via dialog (default) | Input port

When you select Input port, the Timer period parameter changes to Timer initial period and
creates a timer period input port, T, on the block.

Timer period — Indicates period of ePWM counter
64000 (default)

Set the period of the ePWM counter waveform. The resultant ePWM waveform period depends on the
settings of the Action when counter= parameters on the ePWMx tab.

When you enable the HRPWM, you can enter a high-precision floating-point value. The time-base
period high resolution register (TBPRDHR) stores the high-resolution portion of the timer period
value.

The timer period is calculated based on the Counting mode selection and Timer period units, as
shown.

2 Blocks

2-236

Count
Mode

Timer
period
units

Calculation Example

Up or Down Clock
cycles

The value entered in clock cycles is
used to calculate time-base period
(TBPRD) for the ePWM timer
register. The period of the ePWM
timer TCTR = (TBPRD + 1) * TBCLK.
Where TCTR is the timer period in
seconds, and TBCLK is the time-base
clock.

For ePWM clock (EPWMCLK)
frequency = 200 MHz and TBCLK =
5 ns.

EPWMCLK will be equal to
SYSCLKOUT or SYSCLKOUT/2
depending on the EPWM clock
divider (EPWMCLKDIV) parameter
setting.

When the timer period is entered in
clock cycles TBPRD = 9999, and the
ePWM timer period is calculated as
TCTR = 50 µs.

For the default action settings on the
ePWMx tab, the ePWM period = 50
µs.

Seconds The value entered in seconds is used
to calculate the time-base period
(TBPRD) for the ePWM timer
register. The TBPRD value entered in
the register is TBPRD = (TCTR /
TBCLK) – 1. Where, TCTR is the timer
period in seconds and TBCLK is the
time-base clock.

For the default action settings on the
ePWMx tab, the ePWM period is the
same as the timer period (in seconds)
entered.

For EPWMCLK frequency = 200 MHz
and TBCLK = 5 ns.

When the timer period is entered in
seconds TCTR = 50 µs and the time
based period is calculated as TBPRD
= 9999.

For the default action settings in the
ePWMx tab, the ePWM period = 50
µs.

Up-Down Clock
cycles

The value entered in clock cycles is
used to calculate the time-base
period (TBPRD) for the ePWM timer
register. The period of the ePWM
timer, TCTR = 2 * TBPRD * TBCLK.
Where TCTR is the timer period in
seconds and TBCLK is the time-base
clock.

For EPWMCLK frequency = 200 MHz
and TBCLK = 5 ns.

When the timer period is entered in
clock cycles, TBPRD = 10000, and
the ePWM timer period is calculated
as TCTR = 100 µs.

For the default action settings on the
ePWMx tab, the ePWM period = 100
µs.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-237

Count
Mode

Timer
period
units

Calculation Example

Seconds The value entered in seconds is used
to calculate the time-base period
(TBPRD) for the ePWM timer
register. The TBPRD value entered in
the register is TBPRD = TCTR /
TBCLK. Where TCTR is the timer
period in seconds and TBCLK is the
time-base clock.

For the default action settings on the
ePWMx tab, the ePWM period is two
times the timer period (in seconds)
entered.

For EPWMCLK frequency = 200 MHz
and TBCLK = 5 ns.

When the timer period is entered in
seconds TCTR = 50 µs, and the time
based period is calculated as TBPRD
= 10000.

For the default action settings on the
ePWMx tab, the ePWM period = 100
µs.

Timer initial period — Indicates initial ePWM period of the waveform
64000 (default) | 0 | ...

The initial period of the waveform from the time the PWM peripheral starts operation until the ePWM
input port, T, receives a new value for the period. Use Timer period units to measure the period in
clock cycles or in seconds. The timer period is calculated similar to the Timer period parameter.

Dependencies

To enable this parameter, set the Specify timer period via parameter to Input port.

Reload for time base period register (PRDLD) — Event at which counter period register is
reloaded
Counter equals to zero (default) | Counter equals to zero or SYNC event | SYNC
event | Immediate without using shadow

This parameter provides an option to select the appropriate event to update the time period register
with a new value.

• Counter equals to zero - The counter period refreshes when the value of the counter is 0.
• Counter equals to zero or SYNC event - When counter is 0 or when there is a

synchronization event.
• SYNC event - The parameter is in synchronization.
• Immediate without using shadow - The counter period refreshes immediately.

Counting mode — Indicates counting mode of ePWM counter
Up-Down (default) | Up | Down

Specify the counting mode. This PWM module can operate in three distinct counting modes: Up,
Down, and Up-Down.

This illustration shows the waveforms that correspond to these three modes:

2 Blocks

2-238

Dependencies

The Down option is not compatible with HRPWM. To avoid an error when you build the model, do not
set the Counting mode parameter to Down and select the Enable HRPWM (Period) parameter.

Synchronization action — Specify source of phase offset
Disable (default) | Set counter to phase value specified via dialog | Set counter
to phase value specified via input port

Specify the source of a phase offset to apply to the time-base synchronization input signal
EPWMxSYNCI from the SYNC input port.

• Set counter to phase value specified via dialog - Specify this option to create the
Phase offset value parameter.

Note

• The ePWM block expects the phase value in the range of 0 to 360 deg values scaled with clock
cycles as input to the phase values. Hence for the negative values you need to add 360 deg to

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-239

bring it to the range of 0 to 360 deg phase. Example, for -90 deg value, you will have to provide
(360 - 90) = 270 deg scaled with clock cycles as input.

• For any values greater than 360 deg you need to consider the logic to wrap the value to the
scale of 0 to 360 deg. For example, 120 + (360 - 90) = 390 should be wrapped as (390 - 360) =
30 deg before scaling it with clock cycles and providing it as input to ePWM.

• Set counter to phase value specified via input port - Specify this option to create a
phase input port, PHS, on the block.

• Disable - Specify this option to prevent the application of phase offsets to the TB module.

Counting direction after phase synchronization — Counter direction after phase synchronization
Count down after sync (default) | Count up after sync

Configure the timer to count up or down, following synchronization. This parameter corresponds to
the phase direction (PHSDIR) field of the Time-base Control Register (TBCTL).

Dependencies

This parameter appears when Counting mode is Up-Down and Synchronization action is Set
counter to phase value specified via dialog or Input port.

Phase offset value (TBPHS) — Specify Phase offset value (TBPHS)
0 (default)

The specified offset value is loaded in the time base counter on a synchronization event.

To enable this parameter, select the Set counter to phase value specified via dialog in
the Synchronization action parameter.

Enter the Phase offset value (TBPHS) in TBCLK cycles from 0 to 65535. While using HRPWM,
you may enter decimal values.

Note

• The ePWM block expects the phase value to be in the range of 0 to 360 degrees scaled with clock
cycles. For the negative values you need to add 360 degrees to bring it to the range of 0 to 360
degrees phase range. For example, for -90 degrees value, you will have to provide (360 - 90) = 270
degrees scaled with clock cycles as an input.

• For any values greater than 360 degrees you need to consider the logic to wrap the value to the
scale of 0 to 360 degrees. For example, 120 + (360 - 90) = 390 should be wrapped as (390 - 360)
= 30 degrees before scaling it with clock cycles and providing it as an input.

This parameter corresponds to the Time-Base Phase Register (TBPHS).

Specify software synchronization via input port (SWFSYNC) — Indicates phase offset value
off (default) | on

Create an input port, SYNC, for a time-base synchronization input signal, EPWMxSYNCI. Select this
parameter to achieve precise synchronization across multiple ePWM modules by daisy-chaining
multiple time-base (TB) submodules.

2 Blocks

2-240

Enable digital compare A event1 synchronization (DCAEVT1) — Synchronize ePWM time based
on DCAEVT1 digital compare event
off (default) | on

Select this parameter to synchronize this PWM module to the time base of another PWM module.
Fine-tune the synchronization between the two modules using the Phase offset value. Enabling
HRPWM disables this option.

Note This parameter is available only for specific C28x devices.

Enable digital compare B event1 synchronization (DCBEVT1) — Synchronize ePWM time based
on DCBEVT1 digital compare event
off (default) | on

Select this parameter to synchronize this PWM module to the time base of another PWM module.
Fine-tune the synchronization between the two modules using the Phase offset value. This option is
not compatible with HRPWM. Enabling HRPWM disables this option.

Note This parameter is available only for specific C28x devices.

Synchronization output (SYNCO) — Event which generates a time base synchronization output
signal
Disable (default) | Pass through (EPWMxSYNCI or SWFSYNC) | Counter equals to zero
(CTR=Zero) | Counter equals to compare B (CTR=CMPB) | Counter equals to compare
C (CTR=CMPC) | Counter equals to compare D (CTR=CMPD) | Enable the DCBEVT1 sync
event to the SYNCO signal | Enable the DCAEVT1 sync event to the SYNCO signal |
Enable the counter equals to compare D (CTR=CMPD) event to set the SYNCO
signal | Enable the counter equals to compare C (CTR=CMPC) event to set the
SYNCO signal | Enable the counter equals to compare B (CTR=CMPB) event to set
the SYNCO signal | Enable the counter equals to zero (CTR=ZERO) event to set
the SYNCO signal | Enable the SWFSYNC event to set the SYNCO signal

Time-base counter synchronization allows for increased flexibility of synchronization of the ePWM
modules. The clock synchronization scheme allows ePWM modules to operate as a single system
when required. Additionally, this synchronization scheme can be extended to the capture peripheral
submodules (eCAP). In Type 4 ePWM, there are two types of time-base counter synchronization
scheme available. For more information, see “Time-Base Counter Synchronization”.

You can configure additional SYNCO options in Configuration Parameters. For more, see “C28x-
ePWM” on page 1-145

This parameter corresponds to the SYNCOSEL field in the Time-Base Control Register (TBCTL).

Note The parameters for synchronization output (SYNCO) vary based on the processor selected.

The following parameters are available only for specific C28x devices.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-241

• Pass through (EPWMxSYNCI or SWFSYNC) — synchronization input pulse or software-forced
synchronization pulse, respectively. You can use this option to achieve precise synchronization
across multiple ePWM modules by daisy-chaining multiple time-base (TB) submodules.

• Counter equals to zero (CTR=Zero) — Time-base counter equal to zero (TBCTR = 0x0000)
• Counter equals to compare B (CTR=CMPB) — Time-base counter equal to counter-compare

B (TBCTR = CMPB)
• Counter equals to compare C (CTR=CMPC) — Time-base counter equal to counter-compare

C (TBCTR = CMPC)
• Counter equals to compare D (CTR=CMPD) — Time-base counter equal to counter-compare

D (TBCTR = CMPD)
• Disable — Disable the EPWMxSYNCO output (the default)

The following parameters are only specific to F2838x, F28002x and F28003x processors.

• Enable the DCBEVT1 sync event to the SYNCO signal - Select to synchronize digital
compare event B to the synchronization output.

• Enable the DCAEVT1 sync event to the SYNCO signal - Select to synchronize digital
compare event A to the synchronization output.

• Enable the counter equals to compare D (CTR=CMPD) event to set the SYNCO
signal - enables the counter equals to compare D (CTR=CMPD) event to set the SYNCO signal

• Enable the counter equals to compare C (CTR=CMPC) event to set the SYNCO
signal - enables the counter equals to compare C (CTR=CMPC) event to set the SYNCO signal

• Enable the counter equals to compare B (CTR=CMPB) event to set the SYNCO
signal - enables the counter equals to compare B (CTR=CMPB) event to set the SYNCO signal

• Enable the counter equals to zero (CTR=ZERO) event to set the SYNCO signal -
enables the counter equals to zero (CTR=ZERO) event to set the SYNCO signal

• Enable the SWFSYNC event to set the SYNCO signal - enables the software-forced
synchronization pulse (SWFSYNC) event to set the SYNCO signal

Peripheral synchronization event (PWMSYNCSEL) — Time-Base Counter Peripheral
Synchronization
Counter equals to period (CTR=PRD) (default) | Counter equals to zero (CTR=Zero) |
Counter is incrementing and equals to compare C register (CTRU=CMPC) | Counter
is decrementing and equals to compare C register (CTRD=CMPC) | Counter is
incrementing and equals to compare D register (CTRU=CMPD) | Counter is
decrementing and equals to compare D register (CTRD=CMPD)

Each ePWM module has a peripheral synchronization output (SYNCPER). This output signal is used
to synchronize the CMPSS to the EPWM. For more information, see “Time-Base Counter Peripheral
Synchronization”

Time base clock (TBCLK) prescaler divider — Time base clock (TBCLK) prescaler divider
corresponding to CLKDIV
1 (default) | 2 | 4 | …

Use the Time base clock (TBCLK) prescaler divider (CLKDIV) and the High speed time base
clock (HSPCLKDIV) prescaler divider (HSPCLKDIV) to configure the Time-base clock speed
(TBCLK) for the ePWM module. Calculate TBCLK using this equation:

TBCLK in Hz = PWM clock in Hz/(HSPCLKDIV * CLKDIV)

2 Blocks

2-242

For example, the default values of both CLKDIV and HSPCLKDIV are 1, and the default frequency of
PWM clock is 100 MHz, so:

TBCLK in Hz = 100 MHz/(1 * 1) = 100 MHz

TBCLK in seconds = 1/TBCLK in Hz = 1/100 MHz = 0.01 μs

The choices for the Time base clock (TBCLK) prescaler divider are: 1, 2, 4, 8, 16, 32, 64, and
128.

The Time block clock (TBCLK) prescaler divider parameter corresponds to the CLKDIV field of
the Time-base Control Register (TBCTL).

The PWM clock is the SYSCLKOUT or a clock derived from SYSCLKOUT using the PWM clock divider.
For a few TI C2000 processors, there is a PWM clock divider that divides the SYSCLKOUT to derive
the PWM module clock. Check the technical reference manual of your processor for more details.

The frequency of SYSCLKOUT depends on the oscillator frequency and the configuration of the PLL-
based clock module. Changing the value of SYSCLOCKOUT affects the timing of all the ePWM
modules. If there is a PWM clock prescale available in the processor, changing its value also affects
the PWM timing.

High speed time base clock (HSPCLKDIV) prescaler divider — High speed time base clock
(HSPCLKDIV) prescaler divider
1 (default) | 2 | 4 | ...

The choices for the High speed time base clock (HSPCLKDIV) prescaler divider are: 1, 2, 4, 6,
8, 10, 12, and 14.

Selecting Enable high resolution PWM (HRPWM – period) sets the value of this parameter to 1.

This parameter corresponds to the HSPCLKDIV field of the Time-base Control Register (TBCTL).

Enable swap module A and B — Swap output signals for module A and B
off (default) | on

Swap the ePWMA and ePWMB outputs. When you select this parameter, the block outputs the
ePWMA signals on the ePWMB outputs and the ePWMB signals on the ePWMA outputs.

This parameter, sets the SWAPB field in the HRPWM Configuration Register (HRCNFG). This option
works in for ePWMs that support HRPMW as it uses the HRCNFG register.

Note This parameter is available only for specific C28x devices.

ePWMA and ePWMB

You can perform waveform generation configuration in ePWMA/ePWMB tab along with Counter
compare tab.

The ePWM hardware module can generate waveforms for A and B channels followed by Deadband
module and HRPWM module for waveform generation.

During waveform generation you can generate waveform for ePWMA and ePWMB but these
waveform options can be overridden by the options selected in Deadband configuration. For example,

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-243

you can choose not to configure the eWPMB in waveform generation module but use eWPMA
waveform to create Deadband outputs for both ePWMA and ePWMB channels.

Enable ePWM#x — Enables ePWMx output signals
off (default) | on

Enables the ePWMA and/or ePWMB output signals for the ePWM module selected on the General
tab. In this case, # represents the ePWM module and x represents A or B. By default, Enable
ePWM#A is enabled, and Enable ePWM#B is disabled.

Each ePWM module has two outputs, ePWMA and ePWMB. The ePWMA output tab and ePWMB
output tab include the same settings, although the default values vary in some cases.
Dependencies

When you select Enable ePWM#A or Enable ePWM#B, enable support for floating-point numbers
by browsing to Configuration Parameters > Code Generation > Interface > Software
Environment.

CMPx initial value — Initial value of CMPx
32000 (default)

This field appears when you set CMPx source to Input port. In this case, x represents A or B.
Enter the initial pulse width of CMPA or CMPB that the PWM peripheral uses when it starts
operation. Subsequent inputs to the WA or WB ports change the CMPA or CMPB pulse width.

Action when counter=ZERO, Action when counter=ZERO, Action when counter=CMPA on
up-count (CAU), Action when counter=CMPA on down-count (CAD), Action when
counter=CMPB on up-count (CBU), Action when counter=CMPB on down-count (CBD) —
Determine Action Qualifier (AQ) submodule behavior
Set (default)

This group of parameters on the ePWMA output and ePWMB output tabs determine the behavior
of the Action Qualifier (AQ) submodule. The AQ module determines which events are converted into
one of the various action types, producing the required switched waveforms of the ePWM#A and
ePWM#B output signals.

These parameters can be specified as Do nothing, Clear, Set, or Toggle.

The default values vary between the ePWMA and ePWMB tabs.

This table shows the default value for each of these tabs when you set the Counting mode to Up or
Up-Down:

Action when counter = ePWMA ePWMB
ZERO Set Clear
period (PRD) Clear Set
CMPA on up-count (CAU) Clear Set
CMPA on down-count (CAD) Set Do nothing
CMPB on up-count (CBU) Do nothing Clear
CMPB on down-count (CBD) Do nothing Set

This table shows the defaults for each of these tabs when you set Counting mode to Down:

2 Blocks

2-244

Action when counter = ePWMA ePWMB
ZERO Do nothing Do nothing
period (PRD) Clear Clear
CMPA on down-count (CAD) Set Do nothing
CMPB on down-count (CBD) Do nothing Set

For a detailed discussion on the AQ submodule, consult the TMS320x280x Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide (SPRU791), available on the Texas Instruments website.

Compare value reload condition, Add continuous software force input port, Continuous
software force initial logic, Reload condition for software force — Determines how action-
qualifier (AQ) submodule handles S/W force event
Load on counter equals to zero (CTR=Zero) (default)

These parameters determine how the action-qualifier (AQ) submodule handles the S/W force event,
an asynchronous event initiated by software (CPU) via control register bits.

Compare value reload condition determines if and when to reload the action-qualifier S/W force
register from a shadow register. You can specify one of the following Load on counter equals to
zero (CTR=Zero) (default), Load on counter equals to period (CTR=PRD), Load on
either, and Freeze.

Add continuous software force input port creates an input port, SFA, which you can use to
control the software force initial logic. Send one of the following values to SFA as an unsigned
integer data type:

• 0 = Forcing disable: Do nothing(default).
• 1 = Forcing low: Clear low
• 2 = Forcing high: Set high

Continuous software force initial logic - If you did not create the SFA input port, you can use to
select which type of software force initial logic to apply. You can specify one of the following:

• Forcing disable: Do nothing (default).
• Forcing low: Clear low
• Forcing high: Set high

Reload condition for software force

You can specify one of the following Counter equals to zero (CTR=Zero) (default), Counter
equals to period (CTR=PRD), Either period or zero, and Immediate.

Inverted version of ePWM#A — Invert ePWM#A signal
off (default) | on

Invert the ePWM#A signal and output it on the ePWM#B outputs.

This parameter sets the SELOUTB field in the HRPWM Configuration Register (HRCNFG) and will
work for ePWMs with HRPWM support as it uses the HRCNFG register.

Note This parameter is available only for ePWM modules which have HRPWM submodule.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-245

Enable high resolution PWM (HRPWM) — Enables high resolution PWM settings
off (default) | on

Dependencies

• This parameter is available only for ePWMx tabs for C280x and C2833x processors and in
HRPWM tab for the rest of the processors. For more information, refer to HRPWM tab section.

• Similarly, parameters such as High resolution PWM (HRPWM) loading mode, High
resolution PWM (HRPWM) control mode, High resolution PWM (HRPWM) edge control
mode and Use scale factor optimizer (SFO) software feature in ePWMx tabs for C280x and
C2833x processors and in HRPWM tab for rest of the processors. For more information, refer to
HRPWM tab section.

Counter Compare

ePWMLink CMPx — Linking of ePWM module
Not Linked (default) | ePWM1 | ePWM2 | ...

In ePWMx, where x ranges from 1 to 12

Select an ePWM module to which you want to link the current ePWM module for counter value. In
this case for CMPx, x represents A, B, C, or D. When you link the counter value of an ePWM module
with another, the CMPx value of the linked ePWM module is used in the current module. The CMPx,
Specify CMPx via, and CMPx value parameters do not appear when you select another ePWM
module for linking.

However, the linking has no effect when you link an ePWM module to a module that does not exist in
your model.

Note This parameter is available only with some of the TI's C2000 processors.

CMPx Units — Units used by compare registers
Clock cycles (default) | Percentages

The four compare registers CMPA, CMPB, CMPC, and CMPD are compared with the time-base
counter value to generate appropriate events. CMPA and CMPB events are used for controlling the
PWM duty cycle by selecting appropriate actions on the ePWMA and ePWMB tabs. These events can
also be used to generate an interrupt to the CPU and/or a start of conversion pulse to the ADC. You
can refer to the Event Trigger tab to select the events to be triggered.

Compare registers CMPC and CMPD are present only in the latest processors.

Notes

• The term clock cycles refers to the time-base clock on the processor. See the TB clock prescaler
divider topic for an explanation of time-base clock speed calculations.

• Percentages use additional computation time in generated code and can decrease accuracy of the
results.

2 Blocks

2-246

Dependencies

If you set CMPx units to Percentages, enable support for floating-point numbers by browsing to
Configuration Parameters > Code Generation > Interface > Software Environment. In this
case, x represents A, B, C, or D.

Specify CMPx Via — Pulse width source
Specify via dialog (default) | Input port

Specify the source of the pulse width. If you select Specify via dialog (the default), enter a value
for the CMPx value parameter. If you select Input port, the block creates a new Input port with
name WA, WB, WC or WD on the block. If you select Input port, make sure to set the CMPx initial
value parameter. In this case, x represents A, B, C, or D.

CMPx Value/CMPx Initial Value — Pulse width value
32000 (default)

CMPx Value field appears when you set CMPx source to Specify via dialog. CMPx Initial
Value field appears when you set CMPx source to Input port. Enter a value that specifies the
pulse width, in the units specified in CMPx units. In this case, x represents A, B, C, or D.

Reload for compare x Register (SHDWxMODE) — Time at which the counter period is reset
Counter equals to zero (CTR=Zero) (default) | Counter equals to period (CTR=PRD) |
Counter equals to Zero or period (CTR=Zero or CTR=PRD) | ...

The time at which the counter period is reset. In this case, x represents A, B, C, or D.

• Counter equals to zero (CTR=Zero) — Refreshes the counter period when the value of the
counter is 0.

• Counter equals to period (CTR=PRD) — Refreshes the counter period when the value of
the counter is period.

• Counter equals to zero or period (CTR=Zero or CTR=PRD) — Refreshes the counter
period when the value of the counter is 0 or period.

• Freeze — Refreshes the counter period when the value of the counter is freeze.
• Counter equals to zero or SYNC event — Refreshes the counter period when the value of

the counter is zero or SYNC.
• Counter equals to period or SYNC event — Refreshes the counter period when the value

of the counter is 0 or SYNC.
• Counter equals to zero or period or SYNC event — Refreshes the counter period when

the value of the counter is 0 or period or SYNC.
• SYNC event — Refreshes the counter period when the value of the counter is SYNC.
• Immediate without using shadow — Refreshes the counter period immediately.

Deadband Unit

Use deadband for ePWM#A, Use deadband for ePWM#B — Enables deadband area
off (default) | on

Enables a deadband area of rising edge delay or falling edge delay cycles without signal overlap
between pairs of ePWM output signals. Ensure that the corresponding ePWMx (x=A or B) are
enabled on the ePWMx tabs to generate the DB for the same.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-247

Enable half-cycle clocking — Double deadband resolution
off (default) | on

Enable half-cycle clocking to double the deadband resolution. This option clocks the deadband
counters at TBCLK*2 I.e it will divide the clock value in seconds by 2, which in turn doubles the
frequency.

When you disable this option, the deadband counters use full-cycle clocking (TBCLK*1).

Note This parameter is available only specific C28x devices.

Deadband Polarity — ePWM output state at deadband time
Active high (AH) (default) | Active low (AL) | Active high complementary (AHC) |
Active low complementary (ALC)

When you enable only one ePWM for deadband polarity, you will see the options Positive and
Negative.

When you enable both the ePWM for deadband polarity, then you will see the options Active high
(AH), Active low (AL) , Active high complementary (AHC) or Active low
complementary (ALC).

AT the deadband time, both the ePWMA and ePWMB outputs have to set to an inactive state.
Depending on your hardware settings, the inactive states can correspond to a high or a low logic
value. Active high means that the system is active when the ePWM output is set to a high logic value.
Active low means that the system is active when the ePWM output is set to a low logic value. Use the
Complementary option when the B signal needs to be the inverse of A. For more information, refer to
the ePWM technical reference guide of your processor.

This diagram shows the waveforms for typical cases where 0% < duty < 100%.

2 Blocks

2-248

Signal source for rising edge (RED) — Raising edge source
ePWMxA (default) | ePWMxB

Select the signal source to which rising edge delay (RED) has to be applied. You can either select
ePWMxA or ePWMxB for raising edge.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-249

Signal source for falling edge (FED) — Falling edge source
ePWMxA (default) | ePWMxB

Select the signal source to which falling edge delay (FED) has to be applied. You can either select
ePWMxA or ePWMxB for falling edge.

Deadband period units — Indicates deadband period units
Clock cycles (default) | Seconds

Specify the units of the Deadband period as Clock cycles or Seconds. When Deadband period
units is set to Seconds, the software converts the Deadband period from a value in seconds to a
value in clock cycles. For best results, select Clock cycles. Doing so reduces calculations and
rounding errors.

Dependencies

• If you set Deadband period units to Seconds, enable support for floating-point numbers. In the
model window, select Simulation > Model Configuration Parameters.

In the Configuration Parameters dialog box, select Code Generation > Interface. Under Software
Environment, enable floating-point numbers.

• This parameter is available only with some of the TI’s C2000™ processors.

Deadband period source — Source of control logic
Specify via dialog (default) | Input port

Select the source of the Deadband period as Specify via dialog or Input port.

Deadband Rising edge (RED) period (0-16383) — RED delay time value
0 (default)

The value you enter in the field specifies the deadband delay in time-base clock.

The outcome of the Deadband rising edge period (0-16383) parameter depends on the Deadband
period units and Deadband period source.

The following table illustrates the deadband rising edge period result based on the selection of
deadband unit, deadband source and the processor selected.

Deadband period units Deadband period source Deadband rising edge(RED) period
Clock cycles Specify via dialog Deadband Rising edge (RED) period

(0~16383)
Deadband Rising edge (RED) period
(0~1023)

Clock cycles Input port Deadband Rising edge (RED) initial
period (0~16383)
Deadband Rising edge (RED) initial
period (0~1023)

Seconds Specify via dialog Deadband Rising edge (RED) period
Deadband Rising edge (RED) period

2 Blocks

2-250

Deadband period units Deadband period source Deadband rising edge(RED) period
Seconds Input port Deadband Rising edge (RED) initial

period:
Deadband Rising edge (RED) initial
period:

Deadband falling edge (FED) period — FED delay time value
0 (default)

The value you enter in the field specifies the dead band delay in time-base clock.

The parameter Deadband falling edge period outcome depends on the Deadband period units
and Deadband period source. The Deadband falling edge period values are similar to
Deadband rising edge period. For more information refer to deadband rising edge (RED) period
parameter.

Event Trigger

Enable ADC start of conversion for module A — Start of ADC conversion event
off (default) | on

When you select this option, ADC Start of Conversion Event (ePWMSOCxA) is generated when the
event selected in the Start of conversion for module A event selection parameter occurs.

Number of event for start of conversion for Module A (SOCA) to be generated — Event start
number
First event (default) | Second event | Third event | ...

When you select Enable ADC start of conversion for module A, this field specifies the number of
the event that triggers ADC Start of Conversion for Module A (SOCA).

First event triggers ADC start of conversion with every event (the default). Second event
triggers ADC start of conversion with every second event. Third event triggers ADC start of
conversion with every third event.

Event triggers ranges from First event to Fifteenth event based on the processor selected.

Start of conversion for module A event selection — Indicates counter match condition that
triggers ADC start of conversion event
Counter equals to zero (CTR=Zero) (default) | Digital Compare Module A Event 1
start of conversion (DCAEVT1.soc) | ...

This parameter specifies the counter match condition that triggers an ADC start of conversion event.
The choices are:

• Digital Compare Module A Event 1 start of conversion (DCAEVT1.soc)(For
specific C28x devices only) - When the ePWM asserts a DCAEVT1 or DCBEVT1 digital
compare event. Use this feature to synchronize the selected PWM module to the time base of
another PWM module. Fine-tune the synchronization between the two modules using the Phase
offset value parameter.

• Counter equals to zero (CTR=Zero) - When the ePWM counter reaches zero (the default
for few processors).

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-251

• Counter equals to period (CTR=PRD) - When the ePWM counter reaches the period value.
• Counter equals to zero or period (CTR=Zero or CTR=PRD) - When the time base

counter reaches zero (TBCTR = 0x0000) or when the time base counter reaches the period
(TBCTR = TBPRD).

• Counter is incrementing and equals to the compare x register (CTRU=CMPx) -
The ePWM counter reaches the compare value x on the way up. In this case, x represents A, B, C,
or D.

• Counter is decrementing and equals to the compare x register (CTRD=CMPx) -
The ePWM counter reaches the compare value x on the way down. In this case, x represents A, B,
C, or D.

Enable ADC start of conversion for module B — Start of ADC conversion event
off (default) | on

When you select this option, ADC Start of Conversion Event (ePWMSOCxB) is generated when the
event selected in the Start of conversion for module B event selection parameter occurs.

Number of event for start of conversion for Module B (SOCB) to be generated — Event start
number
First event (default) | Second event | Third event | ...

When you select Enable ADC start of conversion for module B, this field specifies the number of
the event that triggers ADC Start of Conversion for Module B (SOCB).

First event triggers ADC start of conversion with every event (the default). Second event
triggers ADC start of conversion with every second event. Third event triggers ADC start of
conversion with every third event.

Event triggers ranges from First event to Fifteenth event based on the processor selected.

Start of conversion for module B event selection — Indicates the counter match condition that
triggers an ADC start of conversion event
Counter equals to zero (CTR=Zero) (default) |

When you select Enable ADC start of conversion for module B, this field specifies the counter
match condition that triggers an ADC start of conversion event. The choices are:

• Digital Compare Module B Event 1 start of conversion (DCBEVT1.soc) (For
specific C28x devices only) - When the ePWM asserts a DCAEVT1 or DCBEVT1 digital
compare event. Use this feature to synchronize the selected PWM module to the time base of
another PWM module. Fine-tune the synchronization between the two modules using the Phase
offset value.

• Counter equals to zero (CTR=Zero) - When the ePWM counter reaches zero (the default
for few processors).

• Counter equals to period (CTR=PRD) - When the ePWM counter reaches the period value.
• Counter equals to zero or period (CTR=Zero or CTR=PRD) - When the time base

counter reaches zero (TBCTR = 0x0000) or when the time base counter reaches the period
(TBCTR = TBPRD).

• Counter is incrementing and equals to the compare x register (CTRU=CMPx) -
The ePWM counter reaches the compare value x on the way up. In this case, x represents A, B, C,
or D.

2 Blocks

2-252

• Counter is decrementing and equals to the compare x register (CTRD=CMPx) -
The ePWM counter reaches the compare value x on the way down. In this case, x represents A, B,
C, or D.

Enable ePWM interrupt — Generates ePWM interrupts
Disabled (default) | Enabled

Select this option to generate ePWM interrupts based on different events defined by Number of
event for interrupt to be generated and Interrupt counter match event condition. By default,
the software clears (disables) this option.

Number of event for interrupt to be generated — Specifies the number of the event that triggers
the ePWM interrupt
First event (default) | Second event to fifteenth event

When you select Enable ePWM interrupt, this field specifies the number of the event that triggers
the ePWM interrupt: First event triggers ePWM interrupt with every event (the default), Second
event triggers ePWM interrupt with every second event, and Third event triggers ePWM
interrupt with every third event.

Note Event triggers ranges from First event to Fifteenth event based on the processor
selected.

Interrupt counter match event condition — Indicates the counter match condition that triggers
ePWM interrupt
Counter equals to zero (CTR=Zero) (default)

When you select Enable ePWM interrupt, this field specifies the counter match condition that
triggers ePWM interrupt. The choices are the same as for Module A counter match event
condition. The choices are:

• Counter equals to zero (CTR=Zero) - When the ePWM counter reaches zero (the default
for few processors).

• Counter equals to period (CTR=PRD) - When the ePWM counter reaches the period value.
• Counter equals to zero or period (CTR=Zero or CTR=PRD) - When the time base

counter reaches zero (TBCTR = 0x0000) or when the time base counter reaches the period
(TBCTR = TBPRD).

• Counter is incrementing and equals to the compare x register (CTRU=CMPx) -
The ePWM counter reaches the compare value x on the way up. In this case, x represents A, B, C,
or D.

• Counter is decrementing and equals to the compare x register (CTRD=CMPx) -
The ePWM counter reaches the compare value x on the way down. In this case, x represents A, B,
C, or D.

HRPWM Tab

During HR (High Resolution) configuration for F2837xD processor, the ePWM modules only exists on
ePWM1 and SFO only runs on CPU1. Therefore if you want to use HRPWM, then ePWM1 must be
allocated to CPU1 and if SFO is enabled, it must run on CPU1.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-253

For F2838xD device, even though CPU and EWPM1 still do the calibration for HRPWM, each EPWM
module clocks its own HRPWM, and use the same values of HRMSTEP calculated by the SFO. This
allows HRPWM to function correctly with CPU2.

Enable high resolution period on ePWM#A (HRPWM - period), Enable high resolution period
on ePWM#B (HRPWM - period) — Indicates the effective resolution for conventionally generated
PWM
off (default) | on

When the effective resolution for the conventionally generated PWM is insufficient, consider using
High Resolution PWM (HRPWM). The resolution of PWM is normally dependent upon the PWM
frequency and the underlying system clock frequency. To address this limitation, HRPWM uses Micro
Edge Positioner (MEP) technology to position edges more finely by dividing each coarse system
clock. The accuracy of the subdivision is on the order of 150ps. The following figure shows the
relationship between one system clock and edge position in terms of MEP steps:

When this parameter is enabled, the block accepts decimal values for the timer period of the ePWM
Module. The Extension Register for the HRPWM Period (TBPRDHR) provides an 8 bit representation
of the decimal part of the Timer period value. This parameter enables the Enable high resolution
PWM (HRPWM - duty) parameter, and displays the HRPWM loading mode, HRPWM control
mode, and HRPWM edge control mode parameters.

Selecting Enable HRPWM (Period) forces TB clock prescaler divider and High Speed TB clock
prescaler divider to 1. These settings match the HRPWM time base clock with the SYSCLKOUT
frequency.

The Down option in the Counting mode parameter is not compatible with HRPWM. To avoid an error
when you build the model, do not set the Counting mode parameter to Down and select the Enable
HRPWM (Period) parameter checkbox.

Note This parameter is available only for specific C28x devices.

Enable HRPWM Duty on ePWM#A(HRPWM - duty) — Indicates decimal part of the compare value
off (default) | on

When this parameter is enabled, decimal values will be accepted for the Compare A value (CMPA) of
the ePWM Module. The Extension Register for the HRPWM Compare A (CMPAHR) provides an 8 bit
representation of the decimal part of the compare value.

2 Blocks

2-254

This parameter also enables HRPWM control mode.

Note This parameter only appears for specific C28x devices.

High resolution PWM (HRPWM) load mode on ePWM#A — Determines when to transfer CMPAHR
shadow value to active register
Counter equals to period (CTR=PRD) (default) | Counter equals to zero (CTR=ZERO) |
Counter equals to either zero or period (CTR=ZERO or CTR=PRD)

This parameter appears when Enable high resolution PWM (HRPWM - period) or Enable high
resolution PWM (HRPWM - duty) is selected. Determine when to transfer the value of the
CMPAHR shadow to the active register:

• Counter equals to zero (CTR=ZERO) — Transfers the value when the time base counter
equals zero (TBCTR = 0x0000).

• Counter equals to period (CTR=PRD) — Transfers the value when the time base counter
equals the period (TBCTR = TBPRD).

• Counter equals to either zero or period (CTR=ZERO or CTR=PRD) — Transfers the
value when either case is true.

This parameter configures the HRLOAD shadow mode bit in the HRPWM configuration register
(HRCNFG).

High resolution PWM (HRPWM) control mode on ePWM#A — Indicates the control mode
Duty control mode (default) | Phase control mode

This parameter appears when Enable high resolution PWM (HRPWM - period) or Enable high
resolution PWM (HRPWM - duty) is selected. Select which register controls the Micro Edge
Positioner (MEP) step size. The High resolution PWM (HRPWM) control mode option configures
the CTLMODE control mode bits.

• Duty control mode — Uses the Extension Register for HRPWM Duty (CMPAHR) or the
Extension Register for HRPWM Period (TBPRDHR) to control the MEP edge position.

• Phase control mode — Uses the Time Base Phase High Resolution Register (TBPHSHR) to
control the MEP edge position.

High resolution PWM (HRPWM) Edge Control mode — Indicates the edge control mode
Both Edge (default) | Rising Edge | Falling Edge

Select the register that controls the MEP precise position control on the edge type.

• Rising Edge — MEP control of rising edge
• Falling Edge — MEP control of falling edge
• Both Edge — MEP control of both edges

The High resolution PWM (HRPWM) edge control mode option configures the EDGMODE edge
mode bits in the HRPWM configuration register (HRCNFG).
Dependencies

This parameter appears when Enable high resolution PWM (HRPWM - period) or Enable high
resolution PWM (HRPWM - duty) is selected.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-255

Use scale factor optimizer (SFO) software — Indicates scale factor
off (default) | on

Enable scale factor optimizing (SFO) software with HRPWM. This software dynamically determines
the scaling factor for the MEP step size. The step size varies depending on operating conditions such
as temperature and voltage. The SFO software reduces variability due to these conditions. For more
information, see the Scale Factor Optimizing Software (SFO) section of the TMS320x2802x, 2803x
Piccolo High Resolution Pulse Width Modulator (HRPWM) Reference Guide.
Dependencies

• Use scale factor optimizer (SFO) software parameter is enabled, read-only and visible, only if
the Enable auto convert, and Enable high resolution PWM (HRPWM - period) parameters
are selected.

• Use scale factor optimizer (SFO) software parameter is editable, only if the Enable auto
convert parameter is unselected.

Enable auto convert — Indicates auto convert
off (default) | on

Apply the scaling factor calculated by the SFO software to the controlling period or duty cycle. (Use
the HRPWM duty mode to select controlling period or duty cycle.) This parameter sets the
AUTOCONV field in the HRPWM Configuration Register (HRCNFG).
Dependencies

• Enable auto convert parameter only appears for specific C28x devices.
• Enable auto convert parameter is enabled, read-only and visible, only if Enable high

resolution PWM (HRPWM - period) parameter is selected.
• Enable auto convert parameter is enabled, and editable, only if Enable high resolution PWM

(HRPWM - duty) parameter is selected.

PWM Chopper Control Tab

Chopper module enable — Enables chopper module
off (default) | on

Select to enable the chopper module.

Chopper frequency divider — Determines frequency of chopper clock
1 (default) | 2 | ...

Set the prescaler value that determines the frequency of the chopper clock. The system clock speed is
divided by this value to determine the chopper clock frequency. Choose an integer value in the range
1 to 8.

Chopper clock cycles width of first pulse — High-energy first pulse to turn on hard and fast power
switch
1 (default) | 2 | ...

Choose an integer value in the range 1 to 16 to set the width of the first pulse. This feature provides
a high-energy first pulse to turn on the hard and fast power switch.

Chopper pulse duty cycle — Determines duty cycles of second and subsequent pulses
12.5% (default) | 25% | ...

2 Blocks

2-256

The duty cycles of the second and subsequent pulses are also programmable. The duty cycle can be
varied in steps of 12.5% from 12.5% to 87.5%.

Trip Zone Unit

Trip zone source — Determines source of control logic for trip zone signals
Specify via dialog (default) | Input port

Specify the source of the control logic for the trip zone signals. Select Specify via dialog (the
default) to enable specific trip zone signals in the block dialog. Choose Input port to enable
specific trip-zone signals using a block input port TZSEL.

The Trip Zone unit tab lets you specify parameters for the Trip-zone (TZ) submodule. Each ePWM
module receives TZ signals from the GPIO MUX. The number of Trip zone signals vary based on C28x
processor families. These signals can be used to force the ePWM output into a specific state based on
an event like an external fault. Use the settings on this tab to program the ePWM outputs to respond
to external events.

If you select Input port, use this bit operation to determine the value of the 16-bit integer to send
to the TZSEL input port:

TZSEL INPUT VALUE = (DCBEVT1*2 15 + DCAEVT1*2 14 + OSHT6*213 + OSHT5*212 +
OSHT4*211 + OSHT3*210 + OSHT2*29 + OSHT1*28 + DCBEVT2*2 7 + DCAEVT2*2 6 +
CBC6*25 + CBC5*24 + CBC4*23 + CBC3*22 + CBC2*21 + CBC1*20)

The software uses the higher 8 bits for the One shot TZ1-TZ6 (OSHT1–6) and the lower 8 bits for
Cyclic TZ1-TZ6 (CBC1–6). You can set up a group of TZ sources (1~6), use a bit operation to
combine them into an integer, and then feed the integer to TZSEL.

For example, to enable One Shot TZ6 (OSHT6) and One Shot TZ5 (OSHT5) as trip zone sources, set
OSHT6 and OSHT5 to 1 and leave the remaining values as 0.

TZSEL INPUT VALUE = (1*215 + 1*214 + 1*213 + 1*212 + 0*211 …)

TZSEL INPUT VALUE = (8192 + 4096 + 0 …)

TZSEL INPUT VALUE = 12288

When the block receives this value, it applies it to the TZSEL register as a binary value:
0011000000000000.

For more information, see the Trip-Zone Submodule Control and Status Registers section of the
TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide.

Enable one-shot trip zone# (TZ#) — Enables corresponding trip zone signal in one-shot mode
off (default) | on

Select this parameter to enable the corresponding trip zone signal in one-shot mode. In this mode,
when the trip event is active, the trip zone module performs the corresponding action on the
EPWM#A/B output immediately and latches the condition. You can unlatch the condition using
software control.

Dependencies

This option is available only when the Trip zone source is Specify via dialog.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-257

Enable one-shot digital compare A event 1 (DCAEVT1), Enable one-shot digital compare B
event 1 (DCBEVT1) — Enables corresponding event signal as OST trip source for event 1
off (default) | on

Select these parameter to enable the corresponding event signal as an OST trip source for event 1. In
this mode, if the digital compare A or digital compare B event 1 is active, the trip zone module
performs the corresponding action on the EPWM#A/B output immediately and latches the condition.
You can unlatch the condition using the software control.

Dependencies

• This option is available only when the Trip zone source is Specify via dialog.
• This parameter is available only for specific C28x processors.

Enable cyclic trip zone# (TZ#) — Enables corresponding trip zone signal in cycle-by-cycle mode
off (default) | on

Select this parameter to enable the corresponding trip zone signal in cycle-by-cycle mode. In this
mode, when the trip event is active, the trip zone module performs the corresponding action on the
EPWM#A/B output immediately and latches the condition. In cycle-by-cycle mode, the trip zone
module automatically clears condition when the ePWM Counter reaches zero. Therefore, in cycle-by-
cycle mode, every ePWM cycle resets or clears the trip event.

Dependencies

This option is available only when the Trip zone source is Specify via dialog.

Enable cyclic digital compare A event 2 (DCAEVT2), Enable cyclic digital compare B event 2
(DCBEVT2) — Enables corresponding event signal as cyclic trip source for event 2
off (default) | on

Select these parameters to enable the corresponding event signal as a cyclic trip source for event 2.
In this mode, if the digital compare A or digital compare B event 2 is active, the Trip zone module
performs the corresponding action on the EPWM#A/B output immediately and latches the condition.
In Cycle-by-Cycle Mode, the Trip zone module automatically clears condition when the ePWM
Counter reaches zero. Therefore, in Cycle-by-Cycle Mode, every ePWM cycle resets or clears the trip
event.

Dependencies

• This option is available only when the Trip zone source is Specify via dialog.
• This parameter is available only for specific C28x processors.

Enable trip-zone one-shot interrupt (OST) — Enables trip zone one-shot interrupt
off (default) | on

Generate an interrupt when any of the enabled one shot (OST) triggering events occur.

Note TZFLG.INT is cleared in the post processing of ISR. However, if the interrupt flag is cleared
when either CBC or OST is set, then another interrupt pulse will be generated. Clearing all flag bits
will prevent further interrupts. This bit is cleared by writing the appropriate value to the TZCLR
register.

2 Blocks

2-258

Enable Trip-zone Cycle-by-Cycle interrupt (CBC) — Enables trip-zone cycle-by-cycle interrupt
off (default) | on

Generate an interrupt when any of the enabled cyclic or cycle-by-cycle (CBC) triggering events occur.

Note TZFLG.INT is cleared in the post processing of ISR. However, if the interrupt flag is cleared
when either CBC or OST is set, then another interrupt pulse will be generated. Clearing all flag bits
will prevent further interrupts. This bit is cleared by writing the appropriate value to the TZCLR
register.

Digital comparator output A event 1 interrupt enable (DCAEVT1), Digital comparator output
A event 2 interrupt enable (DCAEVT2), Digital comparator output B event 1 interrupt
enable (DCBEVT1), Digital comparator output B event 2 interrupt enable (DCBEVT2) —
Enables digital comparator output
off (default) | on

Generate an interrupt when Digital Comparator Output A or Digital Comparator Output B for event 1
or 2 occurs.

Note These parameters are available only for specific C28x processors.

ePWM#A forced (TZ) to, ePWM#B forced (TZ) to, ePWM#A forced (DCAEVT#) to, ePWM#B
forced (DCBEVT#) to — Determines action to consider on ePWM output
No action (default) | High | Low | Hi-Z (High Impedance)

These parameters decide the actions you can take on the ePWM outputs in a trip zone condition. The
trip zone module overrides and forces the ePWM#A and/or ePWM#B (TZ or DCAEVTx) output to one
of these states: No action (the default), High, Low, or Hi-Z (High Impedance).

Digital Compare

Source for digital compare A high signal (DCAH), Source for digital compare B high signal
(DCBH) — Source for digital compare high signal
GPTRIP1SEL/(TZ1) for DCAH/GPTRIP1SEL/(TZ1) for DCBH (default) | GPTRIP3SEL/(TZ3)
for DCAH/GPTRIP7SEL for DCBH | ...

Select the appropriate TZ or COMP signal to generate high logic value for the Digital compare A/B
high signal. Use the Digital compare output A event # selection, Digital compare output B
event # selection, DCAEVT# source select, DCBEVT# source select parameters to determine
the impact of DCAH/DCBH on DCAEVT# and DCBEVT#.

Each digital compare (DC) submodule receives three TZ signals (TZ1 to TZ3) from the GPIO MUX,
and three COMP signals from the COMP (For specific C28x devices only). These signals indicate fault
or trip conditions that are external to the ePWM submodule. Use the settings in this tab to output
specific DC events in response to those external signals. These DC events feed directly into the time
base, trip zone, and event trigger submodules.

For more information, see the Digital Compare (DC) Submodule section of the Piccolo Enhanced
Pulse Width Modulator (ePWM) Module Reference Guide.

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-259

Source for digital compare A low signal (DCAL), Source for digital compare B low signal
(DCBL) — Source for digital compare low signal
GPTRIP1SEL/(TZ1) for DCAL/GPTRIP1SEL/(TZ1) for DCBL (default) | TRIPIN1(ECCDBLERR)
for DCAL/Select From DCBLTRIPSEL for DCBL | ...

Select the appropriate TZ or COMP signal to generate low logic value for the Digital compare A/B low
signal. Use the Digital compare output A event # selection, Digital compare output B event #
selection, DCAEVT# source select, DCBEVT# source select options to determine the impact of
DCAL/DCBL on DCAEVT# and DCBEVT#.

Digital compare output A event # selection (DCAEVT#), Digital Compare output B event #
selection (DCBEVT#) — Qualify signals that generate DC events
Event disabled (default) | DCAH=low and DCAL=don’t care/DCBH=low and DCBL=don’t
care | ...

Qualify the signals that generate DC events, such as DCAEVT# or DCBEVT#. To disable this feature,
choose the Event disabled option. Based on the source selection for the signals, the event can be
triggered. Event selection can be based on the combination of conditions High, Low and Don't care.

DCAEVT# source select, DCBEVT# source select — Digital compare event source
Event disabled (default) | DCAH=low and DCAL=don’t care/DCBH=low and DCBL=don’t
care | ...

This parameter controls two separate aspects of triggering DC events:

• Triggering filtered or unfiltered DC event

• The DC event can be a filtered or unfiltered signal that can be passed to other submodules.
• Configures EVT1SRCSEL and EVT2SRCSEL in both DCACTL and DCBCTL registers.
• Options that begin with DCAEVT# with sync or DCAEVT# with async do not apply filtering

to DC events. Qualified DC signals pass directly to trigger DC events without any filtering.
• Options that begin with DCEVTFILT sync apply filtering to DC events. Qualified signals pass

through filtering circuits before triggering DC events. For more information, refer to the Event
Filtering section of the Piccolo Enhanced Pulse Width Modulator (ePWM) Module Reference
Guide.

• Trigger the DC event synchronously or asynchronously

• The DC event signal can be synchronized with TBCLK or can remain asynchronously.
• Configures EVT1SRCSEL and EVT2SRCSEL in both DCACTL and DCBCTL registers.
• Options that end with async trigger DC events asynchronously. When the qualified or filtered

signals exist, the DC submodule triggers the DC event immediately.
• Options that end with sync trigger DC events synchronously. Once the qualified or filtered

signals exist, the DC submodule triggers the DC event in sync with the TBCLK signal.

Note The following fields appear when you select DCEVTFILT with sync or DCEVTFILT
with async for the DCAEVTX source select or DCBEVTX source select.

For more details about the following parameters, refer to the Technical Reference Manual for
Enhanced Pulse Width Modulator (ePWM) Module Reference Guide.

Pulse select — Indicates blanking window which filters out event occurrences
Counter equals to zero (CTR=Zero) (default) | Counter equals to period (CTR=PRD)

2 Blocks

2-260

The blanking window which filters out event occurrences on the signal while active. Set this
parameter is aligned to either a CTR = PRD pulse or a CTR = Zero pulse.

Blanking window inverted — Indicates the inverted blanking window
off (default) | on

Select this parameter to enable the inverted blanking window.

Blanking window offset — Indicates offset blanking window
0 (default)

The number of TBCLK cycles to determine the point after the Pulse select event to start the
blanking window for filtering

Blanking window width — Indicates duration of blanking window
0 (default)

The number of TBCLK cycles to determine the point after the Pulse select event to start the
blanking window for filtering.

The blanking window will start based on the occurrence Pulse select event with additional TBCLK
cycles as offset as per the Blanking offset window.

During the blanking window all the events are ignored. The events can trigger sync or async events
before and after the blanking window is applied.

Filter source select — Indicates source select for filter
Filtered version of DCAEVT1 (DCAEVT1FILT) (default) | Filtered version of DCAEVT2
(DCAEVT2FILT) | Filtered version of DCBEVT1 (DCBEVT1FILT) | Filtered version of
DCBEVT2 (DCBEVT2FILT)

 c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM

2-261

Use this parameter to select a source for filtering, which forms the DCEVTFILT signal.

Enable counter capture — Indicates counter capture
off (default) | on

Enabling this option allows to capture the TBCTR value of the trip event.

References
For more information, consult the following references, available at the Texas Instruments Web site:

• Enhanced Pulse Width Modulator (ePWM) Module Reference Guide.
• High Resolution Pulse Width Modulator Reference Guide.
• Piccolo Enhanced Pulse Width Modulator (ePWM) Module Reference Guide.
• Piccolo High Resolution Pulse Width Modulator (HRPWM) Reference Guide.
• Piccolo Technical Reference Manual.
• Delfino Technical Reference Manual.
• Concerto Technical Reference Manual.
• Using the ePWM Module for 0% - 100% Duty Cycle Control Application Report.
• Configuring Source of Multiple ePWM Trip-Zone Events.
• DSPs Data Manual.
• Digital Signal Processor Data Manual.
• Digital Signal Controllers (DSCs) Data Manual.

See Also
C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F28004x ADC | “Overview of
Time-Base Synchronization in ePWM Type 4” | “C28x-ePWM” on page 1-145

2 Blocks

2-262

CLA Subsystem
Group blocks to execute algorithm inside CLA

Libraries:
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x

Description
A CLA Subsystem block contains a subset of blocks within a model or system. CLA Subsystem is a
triggered subsystem which is caused by a CLA Task block.

CLA Subsystem block can only be used along with CLA Task block.

CLA Subsystem requires tic2000demospkg package to be loaded in the model with a valid TI C2000
based hardware board.

• Open Configuration Parameters > Hardware Implementation > Hardware board and
change the parameter to a valid TI C2000 board.

• After selecting TI C2000 hardware board, click Manage packages > Refresh > Load from
Embedded coder dictionary app to load tic2000demospkg.

Note

• To know more about how to use the subsystem for CLA, refer “Overview of CLA Configuration for
C2000 Processors Using Subsystem”.

• CLA Subsystem block is derived from Subsystem block with additional parameter configurations
specific to CLA. It is recommended to use the options provided in this block for successful usage
of CLA Subsystem.

 CLA Subsystem

2-263

Ports
Input

In — Signal input to a subsystem
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the Subsystem block. The port
label matches the name of the Inport block.

Use Inport blocks to get signals from the local environment.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — Signal output from a subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the Subsystem block. The port
label on the Subsystem block is the name of the Outport block.

Use Outport blocks to send signals to the local environment.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Parameters on the Code Generation tab require a Simulink Coder™ or Embedded Coder license.

Main

Show port labels — Display options for port labels

FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port labels on the Subsystem block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the Subsystem
block. Otherwise, display the port block name or the port number if the block name is a default
name.

FromPortBlockName
Display the name of the corresponding port block on the Subsystem block.

SignalName
If the signal connected to the port is named, display the name of the signal on the Subsystem
block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels

2 Blocks

2-264

Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Levels of access to contents of subsystem

ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the subsystem.

ReadWrite
Enable opening and modification of subsystem contents.

ReadOnly
Enable opening but not modification of the subsystem. If the subsystem resides in a block library,
you can create and open links to the subsystem and can make and modify local copies of the
subsystem but cannot change the permissions or modify the contents of the original library
instance.

NoReadOrWrite
Disable opening or modification of subsystem. If the subsystem resides in a library, you can create
links to the subsystem in a model but cannot open, modify, change permissions, or create local
copies of the subsystem.

Note You do not receive a response if you attempt to view the contents of a subsystem whose Read/
Write permissions parameter is set to NoReadOrWrite. For example, when double-clicking such a
subsystem, Simulink does not open the subsystem and does not display any messages.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Name of error callback function — Name of function to be called if error occurs

'' (default) | function name

Enter name of a function to be called if an error occurs while Simulink is executing the subsystem.

Simulink passes two arguments to the function: the handle of the subsystem and a character vector
that specifies the error type. If no function is specified, Simulink displays a generic error message if
executing the subsystem causes an error.

Programmatic Use
Parameter: ErrorFcn
Type: character vector
Value: '' | '<function name>'
Default: ''

Permit hierarchical resolution — Resolution for workspace variable names

All (default) | ExplicitOnly | None

 CLA Subsystem

2-265

Select whether to resolve names of workspace variables referenced by this subsystem.

For more information, see “Symbol Resolution” and “Symbol Resolution Process”.

All
Resolve all names of workspace variables used by this subsystem, including those used to specify
block parameter values and Simulink data objects (for example, Simulink.Signal objects).

ExplicitOnly
Resolve only names of workspace variables used to specify block parameter values, data store
memory (where no block exists), signals, and states marked as “must resolve”.

None
Do not resolve any workspace variable names.

Programmatic Use
Parameter: PermitHierarchicalResolution
Type: character vector
Value: 'All' | 'ExplicitOnly' | 'None'
Default: 'All'

Code Generation

Function packaging — Code format

Nonreusable function (default) | Inline

Select the code format to be generated for CLA subsystem.

Note CLA Subsystem block doesn’t support Auto and Reusable function code format.

Inline
Simulink Coder and Embedded Coder inline the subsystem unconditionally and entire algorithm
is inlined to the CLA task (.cla) file. For more, see “Method 2 - Inline Code Generation for CLA
Subsystem”

Nonreusable function
In this subsystem, the code for the algorithm in CLA is generated as a separate .C file along with
data. For more, see “Method 1 - Nonreusable Function Code Generation for CLA Subsystem
(Recommended)”.

Subsystems with this setting generate functions that might have arguments depending on the
Function interface parameter setting. You can name the generated function and file using
parameters Function name and File name (no extension). These functions are not reentrant.

Dependencies

• This parameter requires Simulink Coder for code generation.

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: | 'Inline' | 'Nonreusable function' |

2 Blocks

2-266

Default: 'Nonreusable function'

Function name options — How to name generated function

Auto (default) | Use subsystem name | User specified

Select how Simulink Coder names the function it generates for the subsystem.

If you have an Embedded Coder license, you can control function names with options on the
Configuration Parameter Code Generation > Identifiers pane.

Auto
Assign a unique function name using the default naming convention, model_subsystem(),
where model is the name of the model and subsystem is the name of the subsystem (or that of
an identical one when code is being reused).

Use subsystem name
Use the subsystem name as the function name. By default, the function name uses the naming
convention model_subsystem.

User specified
Enable the Function name field. Enter any legal C or C++ function name, which must be
unique.

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set Function packaging to Nonreusable function or Reusable

function.

Programmatic Use
Parameter: RTWFcnNameOpts
Type: character vector
Value: 'Auto' | 'Use subsystem name' | 'User specified'
Default: 'Auto'

Function name — Name of function for subsystem code

'' (default) | function name

Specify a unique, valid C or C++ function name for subsystem code.

Use this parameter if you want to give the function a specific name instead of allowing the Simulink
Coder code generator to assign its own autogenerated name or use the subsystem name.

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set the Function name options parameter to User specified.

Programmatic Use
Parameter: RTWFcnName
Type: character vector
Value: '' | '<function name>'
Default: ''

 CLA Subsystem

2-267

File name options — How to name generated file

User specified (default)

Select how Simulink Coder names the separate file for the function it generates for the CLA
subsystem. Ensure that you set the File name options parameter to User specified for CLA
Subsystem.

User specified
This option enables the File name (no extension) text entry field. The code generator uses the
name you enter as the file name. Enter any file name, but do not include the .c or .cpp (or any
other) extension. This file name need not be unique.

Note While a subsystem source file name need not be unique, you must avoid giving nonunique
names that result in cyclic dependencies (for example, sys_a.h includes sys_b.h, sys_b.h
includes sys_c.h, and sys_c.h includes sys_a.h).

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: RTWFileNameOpts
Type: character vector
Value: 'User specified'
Default: 'User specified'

File name (no extension) — Name of generated file

sample_cla (default) | file name

The algorithm inside CLA is generated in the source file. (For example sample_cla.c which includes
sample_cla.h). The file name that you specify does not have to be unique. However, avoid giving
non-unique names that result in cyclic dependencies (for example, sys_a.h includes sys_b.h,
sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

Dependencies

• This parameter requires a Simulink Coder license.
• To enable this parameter, set File name options to User specified.

Programmatic Use
Parameter: RTWFileName
Type: character vector
Value: '' | '<file name>'
Default: ''

Function interface — Select to use arguments with generate function

void_void (default)

2 Blocks

2-268

Select to use arguments with generated function. Ensure that you set the Function interface
parameter to void_void for CLA Subsystem.

void_void
Generate a function without arguments and pass data as global variables. For example:

void subsystem_function(void)

For more information, see:

• “Reduce Global Variables in Nonreusable Subsystem Functions” (Embedded Coder)
• “Generate Modular Function Code for Nonvirtual Subsystems” (Embedded Coder)

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: FunctionInterfaceSpec
Type: character vector
Value: 'void_void'
Default: 'void_void'

Function with separate data — Control code generation for subsystem

on (default) | off

Generate subsystem function code in which the internal data for an atomic subsystem is separated
from its parent model and is owned by the subsystem.

 off
Do not generate subsystem function code in which the internal data for an atomic subsystem is
separated from its parent model and is owned by the subsystem.

 on
Generate subsystem function code in which the internal data for an atomic subsystem is
separated from its parent model and is owned by the subsystem. The subsystem data structure is
declared independently from the parent model data structures. A subsystem with separate data
has its own block I/O and DWork data structure. As a result, the generated code for the subsystem
is easier to trace and test. The data separation also tends to reduce the maximum size of global
data structures throughout the model, because they are split into multiple data structures.

Note It is recommended that the Function with separate data parameter is set to on.

For details on how to generate modular function code for an atomic subsystem, see “Generate
Modular Function Code for Nonvirtual Subsystems” (Embedded Coder).

For details on how to apply memory sections to atomic subsystems, see “Override Default Memory
Placement for Subsystem Functions and Data” (Embedded Coder).

 CLA Subsystem

2-269

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: FunctionWithSeparateData
Type: character vector
Value: 'off' | 'on'
Default: 'on'

Memory section for initialize/terminate functions — Select how to apply memory sections

C28xFunction (default)

Select how Embedded Coder applies memory sections to the subsystem initialization and termination
functions. For CLA Subsystem, select C28xFunction. With this selection the initialize and terminate
functions are protected with CLA complier tag such that it is compiled only by C28x compiler.

Note Ensure that the model is loaded with tic2000demospkg package where C28xFunction is
defined.

For example, if name of the initialize function is subsystem_initialize then

#ifndef __TMS320C28XX_CLA__
void subsystem_initialize()
{
//body of the function
}
#endif

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: RTWMemSecFuncInitTerm
Type: character vector
Value: C28xFunction
Default: C28xFunction

Memory section for execution functions — Select how to apply memory sections

ClaFunction (default)

Select how Embedded Coder applies memory sections to the subsystem execution functions. For CLA
Subsystem, select ClaFunction. With this selection the execution functions are protected with CLA
complier tag such that it is compiled only by CLA compiler.

Note Ensure that the model is loaded with tic2000demospkg package where ClaFunction is
defined.

For example, if name of the execution function is subsystem then

2 Blocks

2-270

#ifdef __TMS320C28XX_CLA__
void subsystem()
{
//body of the function
}
#endif

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function.

Programmatic Use
Parameter: RTWMemSecFuncExecute
Type: character vector
Value: ClaFunction
Default: ClaFunction

Memory section for constants — Select how to apply memory sections

ClaDataRAM (default)

Select how Embedded Coder applies memory sections to the subsystem constants. For CLA
Subsystem, select ClaDataRAM. Memory section for constants parameter allows the constants to be
stored in CLA data RAM.

Ensure that the model is loaded with tic2000demospkg package where ClaDataRAM is defined.

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function and select the
Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataConstants
Type: character vector
Value: ClaDataRAM
Default: ClaDataRAM

Memory section for internal data — Select how to apply memory sections

ClaDataRAM (default)

Select how Embedded Coder applies memory sections to the subsystem internal data. For CLA
Subsystem, select ClaDataRAM. Memory section for internal data parameter allows the internal data
to be stored in CLA data RAM.

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function and select the
Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataInternal
Type: character vector

 CLA Subsystem

2-271

Value: ClaDataRAM
Default: ClaDataRAM

Memory section for parameters — Select how to apply memory sections

ClaDataRAM (default)

Select how Embedded Coder applies memory sections to the subsystem parameters. For CLA
Subsystem, select ClaDataRAM. Memory section for parameters allows the parameters to be stored
in CLA data RAM

Dependencies

• To enable this parameter, set Function packaging to Nonreusable function and select the
Function with separate data parameter.

Programmatic Use
Parameter: RTWMemSecDataParameters
Type: character vector
Value: ClaDataRAM
Default: ClaDataRAM

Subsystem Reference

Subsystem file name — File name for referenced subsystem

string | character vector

Dependencies

To access this parameter, click the Convert button.

For more information on how to convert a subsystem to a referenced subsystem, see “Convert an
Existing Subsystem to a Referenced Subsystem”.

Version History
Introduced in R2021b

See Also
C28x CLA Task | “Overview of CLA Configuration for C2000 Processors Using Subsystem” |
Subsystem

2 Blocks

2-272

Protocol Encoder
Encode input data into a uint8 byte stream by specifying the packet structure

Libraries:
C2000 Microcontroller Blockset / Target Communication

Description
The Protocol Encoder encodes input data into a uint8 byte stream as per the specified packet
structure based on the communication protocol. You can use this block to encode the separate fields
into a packet, by specifying the header, terminator, name of packet fields in sequence and their size.
You can also generate checksum bytes for the packet for validating the packet.

Ports
Input

Field1 — First field to be encoded by the block
scalar

First field to be encoded by the block. The name of input port is defined using the block parameter
Field name. Each subsequent field that you create while defining the packet structure results in a
new input port, with the Field name value appearing as the name of input port.

The block can have from 1 to N input ports. N is the number of fields in the packet structure that you
specify in the Specify packet fields sequentially pane.

Output

Packet — uint8 byte stream packet
vector

The uint8 byte stream packet that contains the encoded data from multiple signals as specified in the
packet structure.
Data Types: uint8

Parameters
Header — Header of the packet
character array | array of numeric values less than 255

Specify the header that indicates the beginning of the encoded data. The encoded output data begins
with the header.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters.

 Protocol Encoder

2-273

Few examples of header values are: ‘START’, '$’, 36, [36,37].

Specify packet fields sequentially

Field name — Name of the field in the packet structure
Field1 (default) | string

Specify the name of the field to be included in the packet structure. This name appears as the name
of the input port.

To add a new packet field and specify its properties, click Add. After adding a field, click Move Up or
Move Down to change its sequence in the structure.

To delete a field and its properties, select the row and click Delete.

Input field length — Length of the input field as per the data type
1 (default) | numeric scalar

Length of the input field as per the data type that you enter in the next column (Input field data
type). For example, if the Input field data type of a field is ‘uint16’ and the length is 1, the
encoder converts the input into two uint8 bytes in the output packet.

Input field data type — Data type of the field
uint8 (default) | int8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | single | double

Select the data type of the field.

Note double is considered as 8 bytes. If your hardware does not support 8 bytes double, selecting
this data type might give incorrect results.

Byte order — Endianess of the field in the packet
Little endian (default) | Big endian

Select the endianess of the packet field to describe the order in which bytes are unpacked.

Specify logic to generate checksum for validation — Enable the logic for checksum validation
and select the logic
XOR of bytes | 2's complement of sum of bytes | Custom algorithm

Specify the logic to generate checksum for validation using standard algorithms or a custom
algorithm.

If the logic is selected as XOR of bytes, the block calculates checksum as a single byte which is
XOR of all bytes excluding header, terminator (if applicable).

If the logic is selected as 2's complement of sum of bytes, the block calculates checksum as a
single byte which is the 2's complement of sum off all bytes excluding header and terminator (if
applicable).

If you select Custom algorithm, the additional parameters – Checksum size and File path – are
enabled. In this case, you can provide your own custom logic to validate packet. The checksum bytes
returned by the custom logic should be of size specified in the Checksum size field and these bytes
are appended to the packet. For more information, see “Function Template for Custom Checksum
Logic in Protocol Encoder Block” on page 2-277.

2 Blocks

2-274

For the encoded packet in all the above three cases, checksum bytes are appended either at the end
(if terminator is not available) or before the terminator (if terminator is specified).

Checksum size — Size of checksum bytes specified in the function used for custom algorithm
numeric scalar

Specify size of the checksum bytes generated by the function used for custom algorithm. For more
details, see “Function Template for Custom Checksum Logic in Protocol Encoder Block” on page 2-
277.

Dependencies

This parameter is enabled only if you select Custom algorithm option under Specify logic for
checksum validation parameter.
Data Types: uint8

File path — Path of the function (.m) used for custom checksum logic
MATLAB path

Specify the path of the function (.m) in which you defined the custom algorithm for generating
checksum bytes. The file must be saved in a directory in the MATLAB path.

Dependencies

This parameter is enabled only if you select Custom algorithm option under Specify logic for
checksum validation parameter.
Data Types: uint8

Terminator — Terminator of the packet
<none> (default) | CR ('\r') | LF ('\n') | CR/LF ('\r\n') | NULL ('\0') | Custom
Terminator

Specify the terminator that indicates the end of the encoded data. The last byte/bytes in the encoded
output is the terminator.

If you select Custom Terminator, you can specify your own terminator value.

Custom terminator — Custom terminator of the packet
character array | array of numeric values less than 255

Specify the custom terminator that indicates the end of the encoded data. The last byte/bytes in the
encoded output is the terminator.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters.

Few examples of custom terminator values are: ‘END’, '#’.
Data Types: uint8

 Protocol Encoder

2-275

More About
Encode Data from Fixed-Sized Packet

The Protocol Encoder block can be used to encode input data into a fixed size packet (uint8 byte
stream).

The block converts the input data into uint8 bytes as per the byte order specified, and appends the
data with header, and optional checksum and terminator values.

The general structure of a fixed size packet look like this, with optional checksum and terminator
fields

For example, suppose that you need to encode input into packet as specified in this structure:

In this case, you specify the block parameters as shown in the below figure. The output displayed
when you simulate the model conforms to the packet structure.

2 Blocks

2-276

Function Template for Custom Checksum Logic in Protocol Encoder Block

function csBytes = generateChecksumBytes(payload)
%#codegen
end

Create the function as specified above. The function must return checksum bytes (csBytes) as uint8
data type, whose size must be specified in the Checksum size field available in the block mask. The
input to the function is the payload containing all the data bytes excluding header and terminator, as
uint8 datatype.

Save the function and specify the path of the function in the File path field in the block mask. Ensure
that the file is in the MATLAB path.

Monitor Signals and Tune Parameters

The Protocol Encoder block is available with Simulink Support Package for Arduino® Hardware and
Embedded Coder Support Package for Texas Instruments C2000 Processors. However, to monitor
signals and tune parameters for protocol encoding in Simulink models to be run on TI’s C2000-based
targets, use the Universal Measurement and Calibration Protocol (XCP)-based External mode
simulation.

Version History
Introduced in R2021b

 Protocol Encoder

2-277

See Also
Protocol Decoder

Topics
“Encode and Decode Serial Data Using C2000-based Hardware” on page 2-316

2 Blocks

2-278

Protocol Decoder
Decode a uint8 byte stream by specifying the packet structure

Libraries:
C2000 Microcontroller Blockset / Target Communication

Description
The Protocol Decoder block decodes a uint8 byte stream as per the specified packet structure based
on the communication protocol. You can use this block to decode packet into separate fields, by
specifying the header, terminator, name of packet fields in sequence and their size. You can also
validate the packet using the checksum logic that you specify.

Ports
Input

Data — uint8 byte stream packet
vector

The uint8 byte stream packet that contains the encoded data from multiple signals as specified in the
packet structure.

The input packet can be partially received over multiple sample times. The Protocol Decoder block
has the capability to buffer such partial data until the complete packet is received.
Data Types: uint8

Length — Length of data stream packet at Data input port
numeric scalar

Optional input port to include the exact length of valid data stream. Use this option when you know
the exact length of the valid data in the input data stream

This option is useful when you have a communication channel receive peripheral that outputs
partially received data that contains trailing zeros. Such peripherals also output the length of the
actual number of valid data bytes received. You can connect the length output of the peripheral
directly with the Length input port of Protocol Decoder block, so that trailing zeros in the input byte
stream do not affect the decoding logic.

Dependencies

This input port appears only if you select the Is input data stream length available parameter.
Data Types: uint16

 Protocol Decoder

2-279

Output

Field1 — First field decoded by the block
scalar

Name of the first field decoded by the block. The name of the output port is defined using the block
parameter, Field name. Each subsequent field that you create while defining the packet structure
results in a new output port, with the Field name value appearing as the name of output port.

The block can have from 1 to N output ports. N is the number of fields in the packet structure that you
specify in the Specify packet fields sequentially pane.
Data Types: string

IsNew — New data indicator
0 | 1

New data indicator returned as a logical. A value of 1 indicates that a new data is available since the
last sample was received by the block. This output can be used to trigger subsystems to process new
data received from the Protocol Decoder block.

If IsNew = 0, the block outputs decoded fields from the last complete packet decoded by the block. If
no last sample is available, the block outputs zeros.
Data Types: Boolean

IsValid — Checksum validation indicator
0 | 1

Checksum validation indicator returned as a logical. A value of 1 indicates that the input packet
received by the block is valid when validated using the checksum logic that you specified. If IsValid
= 0, the block outputs zeros.

Dependencies

This output port appears only if you select the Specify logic for checksum validation parameter.
Data Types: Boolean

Variable field length — Actual data length of the last field that is variable-sized
numeric scalar

Actual data length of the last field that is variable-sized. The maximum size of the variable size field
can be specified using Specify maximum length if last field has variable size parameter. The
block outputs the variable-sized data as a fixed size data with size that is equal to the maximum
length specified. The output contains actual data followed by trailing zeros. The size of actual data
can be determined using this Variable Field Length output.

Dependencies

This output port appears only if you select the Specify maximum length if last field has variable
size parameter. For more details, see “Decode Variable-sized Packet” on page 2-286.
Data Types: double

Variable field lengths — Actual data lengths of comma separated variables
array

2 Blocks

2-280

Actual data lengths of comma separated variables that are decoded from the input stream.

This output value (1-by-N array) corresponds to the actual data length of the fields in the packet,
where N is the number of comma separated variables in the packet.

When Parse comma separated variables is selected, the Output field length parameter value
corresponds to the maximum size of the field. The actual size of the field is available as the Variable
field lengths output.

If the actual field length of nth field is less than the specified Output field length parameter
value on the block, the output corresponding to the field is actual data followed by trailing zeros. The
nth element of the Variable field lengths output provides the actual length corresponding to that
variable in that array.

If the actual field length of nth field is greater than the specified Output field length parameter
value on the block, the output corresponding to the field is truncated and outputted, given the actual
packet size does not exceed maximum packet size. The nth element of the Variable field lengths
output provides the actual length corresponding to that variable in that array.
Dependencies

This output port appears only if you select the Parse comma separated variables parameter. For
more details, see “Decode Comma-separated Variable” on page 2-287.
Data Types: double

Parameters
Parse comma separated variables — Parse input data that contains comma separated variables
array

Specify that the input data to be parsed contains comma separated variables.
Data Types: uint8

Header — Header of the packet
character array | array of numeric values less than 255

Specify the header that indicates the beginning of the data. The simulation disregards data that
occurs before the header. The header data is not sent to the output port.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters.

Few examples of header values are: ‘START’, '$’, 36, [36,37].

Specify packet fields sequentially

Field name — Name of the field in the packet structure
Field1 (default) | string

Specify the name of the field included in the packet structure. This name appears as the name of the
output port.

To add a new packet field and specify its properties, click Add. After adding a field, click Move Up or
Move Down to change its sequence in the structure.

 Protocol Decoder

2-281

To delete a field and its properties, select the row and click Delete.

Output field length — Length of the field in the packet structure as per the data type
1 (default) | numeric scalar

Length of the field in the packet structure as per the data type that you enter in the next column
(Output field data type). For example, if the Output field data type of a field is uint16
and the length is 1, the decoder reads two bytes from the packet as per the packet structure and
combine these bytes to output a uint16 value.

If you select Parse comma separated variables parameter, the Output field length value
corresponds to the maximum length that the field can have.
Data Types: double

Output field data type — Data type of the field
uint8 (default) | int8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | single | double

Select the output data type of the field.

Note double is considered as 8 bytes. If your hardware does not support 8 bytes double, selecting
this data type might give incorrect results.

Note If you select the Parse comma separated variables parameter, you cannot edit this
parameter (the Output field data type is set to uint8 always).

Byte order — Endianess of the field in the packet
Little endian (default) | Big endian

Select the endianess of the packet field to describe the order in which bytes are transmitted.

Note If you select the Parse comma separated variables parameter, you cannot edit this
parameter (the Byte order is set to Little endian always).

Specify maximum length if last field has variable size — Enable last field to output variable-
sized data and specify maximum length of the field
numeric scalar

Enable last field of the packet to output variable-sized data and specify the maximum length of the
variable length field, which is present as the last field in the packet. For more details, see “Function
Template for Custom Checksum Logic in Protocol Decoder Block” on page 2-289.

Specify logic for checksum validation — Enable the logic for checksum validation and select the
logic
XOR of bytes | 2's complement of sum of bytes | Custom algorithm

Specify the logic to generate checksum for validation using standard algorithms or a custom
algorithm.

If you select Custom algorithm, the additional parameters – Checksum size and File path – are
enabled.

2 Blocks

2-282

Checksum bytes are expected to be in the last in the packet (before terminator, if terminator is
available).

If you select the logic as XOR of bytes, checksum byte is expected to be the last byte before
terminator. The logic calculates the XOR of all bytes excluding header, terminator and checksum byte,
and compare it with the checksum byte.

If you select the logic as 2's complement of sum of bytes, checksum byte is expected to be the
last byte before terminator. The logic calculates the 2's complement of sum off all bytes excluding
header, terminator and checksum byte, and compare it with the checksum byte.

If you select Custom algorithm, you can provide your own custom logic to validate packet. In this
case, checksum bytes are extracted as per the size specified in the Checksum size field. For more
information, see “Function Template for Custom Checksum Logic in Protocol Decoder Block” on page
2-289.

Checksum size — Number of bytes of checksum data
numeric scalar

Specify the number of bytes of checksum data. The blocks extracts the checksum bytes as per the
specified size and passes it to the function used for custom algorithm, for validating the packet. For
more details, see “Function Template for Custom Checksum Logic in Protocol Decoder Block” on
page 2-289. Checksum bytes are expected to be in the last in the packet (before terminator, if
terminator is available).

Dependencies

This parameter is enabled only if you select Custom algorithm option under Specify logic for
checksum validation parameter.
Data Types: uint8

File path — Path of the function (.m) used for custom checksum logic
MATLAB path

Specify the path of the function (.m) in which you defined the custom algorithm for checksum logic.
The file must be saved in a directory in the MATLAB path. For more details, see “Function Template
for Custom Checksum Logic in Protocol Decoder Block” on page 2-289.

Dependencies

This parameter is enabled only if you select Custom algorithm option under Specify logic for
checksum validation parameter.
Data Types: uint8

Terminator — Terminator of the packet
<none> (default) | CR ('\r') | LF ('\n') | CR/LF ('\r\n') | NULL ('\0') | Custom
Terminator

Specify the terminator that indicates the end of the data. The terminator data is not sent to the
output port.

If you select Custom Terminator, you can specify your own terminator value.
Data Types: uint8

 Protocol Decoder

2-283

Custom terminator — Custom terminator of the packet
character array

Custom terminator that indicates the end of the data. The terminator data is not sent to the output
port.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters.

Few examples of custom terminator values are: ‘END’, '#’

Is input data stream length available — Enable additional input for data stream length
off (default) | on

Enable optional input port to include the exact length of valid data stream.

More About
Decode Fixed-Sized Packet

The Protocol Decoder block can be used to decode fixed size input packet (uint8) into separate
fields.

The block extracts the separate fields as per the packet structure specified, and convert them to
output data of the data type specified in the Output field data type parameter as per the Byte
order.

The input packet can be partially received in over multiple sample times. The Protocol Decoder block
has the capability to buffer such partial data until the complete packet is received.

The general structure of a fixed size packet look like this, with optional checksum and terminator
fields:

For example, suppose that you need to decode input packet as specified in this structure:

In this case, you specify the block parameters as shown in the below figure. The output displayed
when you simulate the model conforms to the packet structure:

2 Blocks

2-284

The block follows this sequence for decoding the data:

1 Extract packet based on header, packet size and terminator (if applicable). The packet size is
determined by adding these:

Sum of values specified using Output field length parameter (in bytes) + Value of
Checksum size parameter (if applicable).

The block waits for the header, to start decoding. Once it receives the header, it reads the fixed
data fields as per the packet size. If the terminator is specified, the blocks checks if the
subsequent bytes following the fixed size bytes are terminator bytes. If the subsequent bytes are
not terminator bytes, the packet is discarded.

2 Validate the data received from the previous step using the checksum logic specified (if
applicable).

3 Split the fields in the packet as per the length, datatype, and endianness specified, and provide
them as output.

 Protocol Decoder

2-285

Decode Variable-sized Packet

If the last field in the packet is variable-sized, you select the parameter Specify maximum length if
last field has variable size.

The input packet can be partially received in over multiple sample times. The Protocol Decoder block
has the capability to buffer such partial data until the complete packet is received.

The general structure of a packet containing variable-sized field may look like this, with optional
checksum and terminator fields:

For example, NMEA (National Marine Electronics Association) sentences given by a GPS device can
be considered as a packet that contains both fixed size fields and variable size field. The general
structure of these sentences looks like this:

Here:

• Header ($): Start of the packet
• Talker ID: Identify the talker (GP, GN, and so on)
• MessageID: Type of message (RMC, GGA, and so on)
• Variable size data: Data fields depending on the Message ID
• Checksum: Checksum bytes are followed after asterisk *. The checksum is a two-digit hexadecimal

number calculated by the bit-wise exclusive OR of ASCII codes of all characters between $ and *,
not inclusive.

• Terminator: CR LF, indicating end of the message

This figure shows the corresponding entries for the various parameters in the block and the output in
the Simulink model. The Checksum size in the block mask is specified as 3, which includes asterisk
* and the 2-digit checksum value. The last row, GPSData, denotes the variable sized data with default
values for its Output field length, Output field data type, and Byte order parameters, which
cannot be edited. The variable size output (GPSData in the block) contains actual data appended with
zeros. The additional output port that gets enabled, Variable field length, can be used to determine
the actual size of the field.

2 Blocks

2-286

The custom algorithm required for checksum validation is saved in another file, validateData.m,
and it is called using the File path field in the block. The logic defined for the above case, in
validateData.m, looks like this:

function isValid = validateData(packet, checksumBytes)
%#codegen
isValid = false;
calculated_checksum = uint8(0);
% Checksum bytes from NMEA starts with '*', followed by 2 bytes which is
% XOR of all bytes in hexadecimal format.
if ~checksumBytes(1) == uint8('*')
 return;
end
for i = 1:numel(packet)
 calculated_checksum = bitxor(calculated_checksum ,packet(i));
end
if checksumBytes(2:3) == dec2hex(calculated_checksum)
 isValid = true;
end
end

Note If you specify that the data contains variable-sized field, the Terminator selection is mandatory
(select a value except none).

Decode Comma-separated Variable

To decode comma-separated variable, you enable the Parse comma separated variables parameter.

 Protocol Decoder

2-287

The input packet can be partially received in over multiple sample times. The Protocol Decoder block
has the capability to buffer such partial data until the complete packet is received.

The fields in the packet can be variable sized. In the Output field length column, ensure that the
maximum possible length of the field is given. The block outputs fixed size fields based on this length.

For example, consider the packet below:

This figure shows the corresponding entries for the various parameters in the Protocol Decoder block
and the output in the Simulink model.

2 Blocks

2-288

The block follows this sequence for decoding the data:

1 Check for a packet which has the specified header and terminator and does not exceed the
maximum packet size.

The maximum packet size is determined by adding these:

Sum of Output field length + Checksum size (if applicable) + number of fields -1.
2 Validate the packet once the packet satisfying above condition is obtained, using the checksum

logic (if applicable).
3 Parse the individual fields considering comma as the separator. The additional output port that

gets enabled, Variable field lengths, can be used to determine the actual size of the fields.

a If the nth field has a length that is the same as specified in Output field length in the block,
the block outputs the value as it is. In this case, the nth element of the Variable field
lengths is equal to the field length specified.

b If the nth field has a length that is less than its specified Output field length in the
block, the block outputs the actual value appended with zeros. In this case, the nth element of
the Variable field lengths is equal to the actual field length obtained.

c If the nth field has a length that is greater than specified output data length, the block
outputs truncated value as per the specified length. In this case, the nth element of the
Variable field lengths is equal to the actual field length obtained.

Note If you want to parse comma-separated variable, the Terminator selection is mandatory (select
a value except none).

Function Template for Custom Checksum Logic in Protocol Decoder Block

function isValid = validateChecksumByte(payload,checksumByte)
%#codegen
end

Create the function as specified above to validate packet using checksum. The function returns a
boolean, isValid, which determines if the packet is valid. If the isValid is false, output field values
given by the block are 0's. Payload contains all the data bytes excluding header, terminator, and
checksum bytes, in uint8 data type. The checksum bytes (checksumByte) are uint8 bytes whose
size is specified in the Checksum size field available in the block mask.

Save the function and specify the path of the function in the File path field in the block mask. Ensure
that the file is in the MATLAB path.

Example

Consider the NMEA packet with the following structure:

You define the block parameters for this case like this:

 Protocol Decoder

2-289

2 Blocks

2-290

Checksum bytes are followed after asterisk *. The checksum is a two-digit hexadecimal number
calculated by the bit-wise exclusive OR of ASCII codes of all characters between the $ and *, not
inclusive. The Checksum size in the block mask is specified as 3, which includes asterisk * and 2-
digit checksum value.

Consider the following input (obtained from a GPS receiver) to the Protocol Decoder:

[uint8(['$GPVTG,77.52,T,,M,0.004,N,0.008,K,A*06']),uint8([13,10])]

The first input to validate the logic is the packet excluding header($), terminator (CR(ASCII-13)(LF -
ASCII-10)), and checksum bytes:

uint8(['GPVTG,77.52,T,,M,0.004,N,0.008,K,A'])

The second input is the checksum bytes *06, which are the last 3 bytes before terminator. In this
case, the validation logic can be created like this:

function isValid = validateData(packet, checksumBytes)
%#codegen
isValid = false;
calculated_checksum = uint8(0);
% Checksum bytes from NMEA starts with '*', followed by 2 bytes which is
% XOR of all bytes in hexadecimal format.
if ~checksumBytes(1) == uint8('*')
 return;
end
for i = 1:numel(packet)
 calculated_checksum = bitxor(calculated_checksum ,packet(i));
end
if checksumBytes(2:3) == dec2hex(calculated_checksum)
 isValid = true;
end
end

Monitor Signals and Tune Parameters

The Protocol Decoder block is available with Simulink Support Package for Arduino Hardware and
Embedded Coder Support Package for Texas Instruments C2000 Processors. However, to monitor
signals and tune parameters for protocol decoding in Simulink models to be run on TI’s C2000-based
targets, use the Universal Measurement and Calibration Protocol (XCP)-based External mode
simulation.

Version History
Introduced in R2021b

See Also
Protocol Encoder

Topics
“Encode and Decode Serial Data Using C2000-based Hardware” on page 2-316

 Protocol Decoder

2-291

BMI160
Measure linear acceleration, angular rate, and temperature from BMI160 sensor

Libraries:
C2000 Microcontroller Blockset / Sensors

Description
The BMI160 block outputs the values of linear acceleration and angular rate along x-, y- and z- axes
as measured by the BMI160 sensor connected to TI’s C2000 board. The block also outputs the
temperature as read by the BMI160 sensor. If you connect the BMM150 as a secondary sensor to
BMI160, the BMI160 block also outputs magnetic field along x-, y- and z- axes as measured by the
BMM150 sensor.

The block supports Single tap, Double tap, High g detection, Any motion, Slow motion, Flat detection,
and Data ready interrupts.

Interrupt source output is a 1-by-7 vector with elements corresponding to the source of single tap,
double tap, high g detection, any motion, slow motion, flat detection, and data ready interrupts
respectively. 1 indicates that it is the source, 0 indicates that it is not a source, and -1 indicates that
the interrupt is not active.

Tap source output is a 1-by-4 vector, with the first three elements indicating whether the single tap /
double tap occurred in X, Y and Z axis, and the fourth element indicating whether it is on positive or
negative direction of the axis. High g source output is a 1-by-4 vector, with the first three elements
indicating whether the High g interrupt occurred in X,Y and Z axis and the fourth element indicating
whether it is on positive or negative direction of the axis. Any motion source output is a 1-by-4 vector
which shows on which of the X,Y and Z axis did Any motion interrupt occur and whether it is on
positive or negative direction of the axis. First byte denotes whether the event occurred on X axis,
second byte denotes whether the event occurred on Y axis, third byte denotes whether the event
occurred on Z axis and fourth byte denotes the direction. For direction byte 0 denotes negative side
and 1 denotes positive and for other bytes 1 denotes that axis is the source and 0 denotes that axis is
not the source.

When interrupts are enabled use external interrupt block and develop respective function call
subsystem.

Ports
Output

Acceleration — Linear acceleration measured by BMI160 sensor
row vector

Linear acceleration (in m/s2) measured by BMI160 sensor connected to C2000 board, along the x-, y-
and z- axes, specified as a row vector [x,y,z].

2 Blocks

2-292

Dependencies

This output port appears only if you select the Acceleration (m/s2) parameter.
Data Types: double

Angular Rate — Angular rate measured by BMI160 sensor
row vector

Angular rate (in rad/s) measured by BMI160 sensor connected to C2000 board, along the x-, y- and z-
axes, specified as a row vector [x,y,z].

Dependencies

This output port appears only if you select the Angular rate (rad/s) parameter.
Data Types: double

Magnetic Field — Magnetic field strength measured by a secondary BMM150 sensor
row vector

Magnetic field strength (in µT) measured by a BMM150 sensor that is connected as a secondary
sensor to BMI160 sensor, along the x-, y- and z- axes, specified as a row vector [x,y,z].

Dependencies

This output port appears only if you select the Enable secondary magnetometer and Magnetic
Field (µT) parameters.
Data Types: double

Temperature — Temperature measured by BMI160 sensor
scalar

Temperature (in ℃) measured by BMI160 sensor connected to C2000 board.

Dependencies

This output port appears only if you select the Temperature (℃) parameter.
Data Types: double

Acceleration Status — Status of acceleration value
0 | 1

Status of acceleration 0 indicates that the data read is new and 1 indicates that the data read is not
new.

Dependencies

This output port appears only if you select the Acceleration Status parameter.
Data Types: int8

Angular Rate Status — Status of angular rate value
0 | 1

Status of angular rate 0 indicates that the data read is new and 1 indicates that the data read is not
new.

 BMI160

2-293

Dependencies

This output port appears only if you select the Angular Rate Status parameter.
Data Types: int8

Magnetic Field Status — Status of magnetic field value
0 | 1

Status of magnetic field 0 indicates that the data read is new and 1 indicates that the data read is not
new.

Dependencies

This output port appears only if you select the Magnetic Field Status parameter.
Data Types: int8

Interrupt Source — Status of interrupt source
0 | 1 | -1

Interrupt source is a 1-by-7 vector which represents Single tap, Double tap, High g detection, Any
motion, Slow motion, Flat detection, and Data ready interrupts.

Status of interrupt source 1 indicates that the interrupt enabled and it is the source of the generated
interrupt, 0 indicates that the interrupt is enabled and it is not the source of the generated interrupt,
and -1 indicates that the interrupt is not enabled.

Dependencies

This output port appears only if you select one of these parameters.

• Single tap
• Double tap
• High g detection
• Any motion
• Flat detection
• Data ready

Data Types: double

Tap event Source — Status of tap event source
row vector

Tap event source is a 1-by-4 vector which represents Single tap or Double tap interrupt. The first
three elements indicates if the interrupt occurred in X, Y and Z axis, and the fourth element indicates
if it is on positive or negative direction of the axis. For direction, byte 0 denotes negative side, 1
denotes positive side and for other bytes 1 denotes that axis is the source and 0 denotes that axis is
not the source.

Dependencies

This output port appears only if you select the Interrupt source parameter.
Data Types: int8

2 Blocks

2-294

High g event Source — Status of high g event source
row vector

High g event source is a 1-by-4 vector which represents High g interrupt. The first three elements
indicates if the interrupt occurred in X, Y and Z axis, and the fourth element indicates if it is on
positive or negative direction of the axis. For direction, byte 0 denotes negative side, 1 denotes
positive side and for other bytes 1 denotes that axis is the source and 0 denotes that axis is not the
source.

Dependencies

This output port appears only if you select the Interrupt source parameter.
Data Types: int8

Any motion event Source — Status of any motion event source
row vector

Any motion event source is a 1-by-4 vector which represents Any motion interrupt. The first three
elements indicates if the interrupt occurred in X, Y and Z axis, and the fourth element indicates if it is
on positive or negative direction of the axis. For direction, byte 0 denotes negative side, 1 denotes
positive side and for other bytes 1 denotes that axis is the source and 0 denotes that axis is not the
source.

Dependencies

This output port appears only if you select the Interrupt source parameter.
Data Types: int8

Parameters
I2C module — Module for communication
I2C_A (default)

The I2C module to be used for communication to the BMI160 sensor. The number of I2C modules
supported varies across different C2000 processors. You can find the supported I2C modules
corresponding to the processor (which you selected for the Hardware Board parameter in the
Simulink model) by opening the Configuration Parameters dialog box and checking the I2C specific
tabs under Target hardware resources.

BMI160 I2C address — I2C address of BMI160 sensor
0x69 (default) | 0x68

The I2C address used by BMI160 sensor communicating with the C2000 processor. The default
parameter value (0x69) corresponds to the value mentioned in the Schematics section of the
BOOSTXL-SENSORS BoosterPackTM Plug-in Module User's Guide.

Enable secondary magnetometer — Enable read data from BMM150 connected as a secondary
sensor to BMI160
on (default) | off

If this option is selected, the block can read magnetometer data from a BMM150 sensor that is
connected as a secondary sensor to BMI160.

 BMI160

2-295

BMM150 I2C address — I2C address of BMM150 sensor
0x13 (default) | 0x10 | 0x11 | 0x12

The I2C address used by BMM150 sensor connected as a secondary sensor to BMI160 sensor. The
default parameter value (0x13) corresponds to the value mentioned in the Schematics section of
the BOOSTXL-SENSORS BoosterPackTM Plug-in Module User's Guide.
Dependencies

This parameter appears only if you select the Enable secondary magnetometer parameter.

Select outputs

Acceleration (m/s2) — Set output port for reading acceleration
on (default) | off

Select this parameter to set Acceleration as one of the output ports.

Angular rate (rad/s) — Set output port for reading angular rate
on (default) | off

Select this parameter to set Angular Rate as one of the output ports.

Magnetic Field (µT) — Set output port for reading magnetic field
on (default) | off

Select this parameter to set Magnetic Field as one of the output ports.

Temperature (℃) — Set output port for reading temperature
off (default) | on

Select this parameter to set Temperature as one of the output ports.

Acceleration status — Set output port for obtaining acceleration status
off (default) | on

Select this parameter to set Acceleration Status as one of the output ports.

Angular rate status — Set output port for obtaining angular rate status
off (default) | on

Select this parameter to set Angular Rate Status as one of the output ports.

Magnetic Field Status — Set output port for obtaining magnetic field status
off (default) | on

Select this parameter to set Magnetic Field Status as one of the output ports.

Interrupt source — Set output port for obtaining interrupt source status
off (default) | on

Select this parameter to set Interrupt source as one of the output ports.

Tap source — Set output port for obtaining tap event status
off (default) | on

Select this parameter to set Tap event source as one of the output ports.

2 Blocks

2-296

High g source — Set output port for obtaining high g event status
off (default) | on

Select this parameter to set High g event source as one of the output ports.

Any motion source — Set output port for obtaining any motion event status
off (default) | on

Select this parameter to set Any motion event source as one of the output ports.

Acceleration (m/s2) — Set output port for reading acceleration
on (default) | off

Select this parameter to set Acceleration as one of the output ports.

Angular rate (rad/s) — Set output port for reading angular rate
on (default) | off

Select this parameter to set Angular Rate as one of the output ports.

Magnetic Field (µT) — Set output port for reading magnetic field
on (default) | off

Select this parameter to set Magnetic Field as one of the output ports.

Temperature (℃) — Set output port for reading temperature
off (default) | on

Select this parameter to set Temperature as one of the output ports.

Acceleration status — Set output port for obtaining acceleration status
off (default) | on

Select this parameter to set Acceleration Status as one of the output ports.

Angular rate status — Set output port for obtaining angular rate status
off (default) | on

Select this parameter to set Angular Rate Status as one of the output ports.

Magnetic Field Status — Set output port for obtaining magnetic field status
off (default) | on

Select this parameter to set Magnetic Field Status as one of the output ports.

Data type — Output data type for values from BMI160 sensor
single (default) | double

Specify the output data type for the values read from BMI160 sensor. The default data type for TI’s
C2000 processors is single. Use this parameter to change the values to double, if required.

Sample time — Time interval to read data
-1 (default) | positive integer

 BMI160

2-297

Specify how often this block reads the data from the BMI160 sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

Accelerometer Settings

Accelerometer range — Full scale for measuring linear acceleration
±2g (default) | ±4g | ±8g | ±16g

Select the full scale for measuring linear acceleration (the range of acceleration that the sensor
needs to measure).

Accelerometer output data rate — Rate at which accelerometer data is sampled
12.5 Hz (default) | 25 Hz | 50 Hz | 100 Hz | 200 Hz | 400 Hz | 800 Hz | 1600 Hz

Select the output data rate at which accelerometer data is sampled, which also determines the
bandwidth.

Enable low pass filter — Enable low pass filter to read accelerometer data from BMI160 sensor
off (default) | on

Select this option to enable the low-pass filter for the acceleration values read from BMI160 sensor.

Accelerometer filter mode — Select the filter mode for low pass filter for accelerometer values
Normal (default) | OSR2 | OSR4

Select the filter mode for low pass filter for accelerometer values. The 3dB Cutoff frequency of the
accelerometer depends on the value of this parameter and the ODR that you selected using the
Accelerometer output data rate parameter.

Gyroscope settings

Gyroscope range — Full scale for measuring angular rate
125 dps (default) | 250 dps | 500 dps | 1000 dps | 2000 dps

Select the full scale for measuring angular rate (the range of angular rate that the sensor needs to
measure).

Gyroscope output data rate — Rate at which gyroscope data is sampled
25 Hz (default) | 50 Hz | 100 Hz | 200 Hz | 400 Hz | 800 Hz | 1600 Hz | 3200 Hz

Select the output data rate at which gyroscope data is sampled, which also determines the
bandwidth.

Enable low pass filter — Enable low pass filter to read gyroscope data from BMI160 sensor
off (default) | on

Select this option to enable the low-pass filter for the angular rate values read from BMI160 sensor.

Gyroscope filter mode — Select the filter mode for low pass filter for gyroscope values
Normal (default) | OSR2 | OSR4

Select the filter mode for low pass filter for gyroscope values. The 3dB Cutoff frequency of the
gyroscope depends on the value of this parameter and the ODR that you selected using the
Gyroscope output data rate parameter.

2 Blocks

2-298

Magnetometer settings

Magnetometer output data rate — Rate at which magnetometer data is sampled
25 Hz (default) | 0.78125 Hz | 1.5625 Hz | 3.125 Hz | 6.25 Hz | 12.5 Hz | 50 Hz | 100 Hz |
200 Hz | 400 Hz | 800 Hz

Select the output data rate at which magnetometer data is sampled.

Generate interrupts on

Note Selecting one of these parameters (Single tap, Double tap, High g detection, Any motion,
Slow motion, Flat detection, Data ready) overrides the availability of other status values at the
output. The selection of parameters for other status outputs (Acceleration status, Angular
rate status, and Magnetic field status) is disabled.

Single tap — Enable interrupt when single tap is triggered
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when single tap
is triggered and following conditions are valid.

• The tap occurs during the Shock Time threshold.
• No tap occurs during the Quiet Time threshold.

Quiet Time threshold — Quiet time duration
30 ms (default) | 20 ms

Select the quiet time threshold for generating single tap or double tap interrupt. The tap must not
occur during the specified quiet time threshold for generating single tap or double tap interrupt.

Dependencies

This parameter appears only if you select the Single tap parameter or Double tap parameter.

Shock Time threshold — Shock time duration
50 ms (default) | 75 ms

Select the shock time threshold for single tap or double tap interrupt. The tap must occur during the
specified shock time threshold for generating single tap or double tap interrupt.

Dependencies

This parameter appears only if you select Single tap parameter or Double tap parameter.

Amplitude threshold — Amplitude threshold for detecting a tap
0.1 (default)

Specify the amplitude threshold value ranging from 0.03125g - 1.96875g for detecting a single tap or
double tap. When the value crosses the specified amplitude threshold value, a tap occurs. Amplitude
threshold has minimum and maximum range which depends on the accelerometer range.

Dependencies

This parameter appears only if you select the Single tap parameter or Double tap parameter.

 BMI160

2-299

Interrupt generate pin — Pin to generate single tap interrupt
INT1 (default) | INT2

Select the pin on which the single tap interrupt, which can be used by the C2000 board, gets
generated on the sensor.

Dependencies

This parameter appears only if you select the Single tap parameter.

Double tap — Enable interrupt when double tap is triggered
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when double tap
is triggered and following conditions are valid.

• The first tap occurs during the Shock Time threshold.
• No tap occurs during the Quiet Time threshold.
• The second tap occurs during the Duration Time threshold.

Duration Time threshold — Time threshold for second tap
50 ms (default) | 100 ms | 150 ms | 200 ms | 250 ms | 375 ms | 500 ms | 700 ms

Select the duration time threshold for double tap interrupt. The second tap must occur during the
specified duration time threshold for generating double tap interrupt.

Dependencies

This parameter appears only if you select Double tap parameter.

Interrupt generate pin — Pin to generate double tap interrupt
INT1 (default) | INT2

Select the pin on which the double tap interrupt, which can be used by the C2000 board, gets
generated on the sensor.

Dependencies

This parameter appears only if you select the Double tap parameter.

High g detection — Enable interrupt when high g detection is triggered
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when high g
interrupt is detected.

Time threshold(2.5 ms to 640 ms) — Time duration for high g detection
2.5 (default) |

Specify the time threshold value ranging from 2.5 ms to 640 ms for high g interrupt. The high g
detection must occur during the specified time threshold for generating high g interrupt.

Dependencies

This parameter appears only if you select High g detection parameter.

2 Blocks

2-300

Amplitude threshold — Amplitude threshold for detecting high g interrupt
0.1 (default)

Specify the amplitude threshold value ranging from 0.00391g - 1.99546g for detecting a high g
interrupt. When the value crosses the specified amplitude threshold value, high g interrupt is
detected. Amplitude threshold has minimum and maximum range which depends on the
accelerometer range.

Dependencies

This parameter appears only if you select the High g detection parameter.

Interrupt generate pin — Pin to generate high g interrupt
INT1 (default) | INT2

Select the pin on which the high g interrupt, which can be used by the C2000 board, gets generated
on the sensor.

Dependencies

This parameter appears only if you select the High g detection parameter.

Any motion — Enable interrupt when any motion interrupt is triggered
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when any
motion interrupt is detected.

Time threshold — Time duration for any motion detection
1 (default) | 2 | 3 | 4

Select the time threshold value for any motion interrupt. The any motion detection must occur during
the specified time threshold.

Dependencies

This parameter appears only if you select Any motion parameter.

Amplitude threshold — Amplitude threshold for detecting any motion interrupt
0.1 (default)

Specify the amplitude threshold value ranging from 0.00195g - 0.999g for detecting any motion
interrupt. When the value crosses the specified amplitude threshold value, any motion interrupt is
detected. Amplitude threshold has minimum and maximum range which depends on the
accelerometer range.

Dependencies

This parameter appears only if you select Any motion parameter.

Interrupt generate pin — Pin to generate any motion interrupt
INT1 (default) | INT2

Select the pin on which the any motion interrupt, which can be used by the C2000 board, gets
generated on the sensor.

 BMI160

2-301

Dependencies

This parameter appears only if you select the Any motion parameter.

Slow motion — Enable interrupt when slow motion interrupt is triggered
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when slow
motion interrupt is detected.

Time threshold — Time duration for slow motion detection
1 (default) | 2 | 3 | 4

Select the time threshold value for slow motion interrupt. The slow motion detection must occur
during the specified time threshold.

Dependencies

This parameter appears only if you select Slow motion parameter.

Amplitude threshold — Amplitude threshold for detecting slow motion interrupt
0.1 (default)

Specify the amplitude threshold value ranging from 0.00195g - 0.999g for detecting slow motion
interrupt. When the value crosses the specified amplitude threshold value, slow motion interrupt is
detected.

Dependencies

This parameter appears only if you select Slow motion parameter.

Interrupt generate pin — Pin to generate slow motion interrupt
INT1 (default) | INT2

Select the pin on which the slow motion interrupt, which can be used by the C2000 board, gets
generated on the sensor.

Dependencies

This parameter appears only if you select the Slow motion parameter.

Flat detection — Enable interrupt when flat detection interrupt is triggered
-1 (default) | positive integer

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when flat
detection interrupt is detected.

Theta threshold (0.7° to 44.8°) — Theta threshold for detecting flat detection interrupt
5 (default)

Specify the amplitude threshold value ranging from 0.7° - 44.8° for detecting flat detection interrupt.
When the value crosses the specified amplitude threshold value, flat detection interrupt is detected.

Dependencies

This parameter appears only if you select Flat detection parameter.

2 Blocks

2-302

Time threshold — Time duration for flat detection interrupt
640 (default) | 0 | 1280 | 2560

Select the time threshold value for flat detection interrupt. The flat detection interrupt must occur
during the specified time threshold.

Dependencies

This parameter appears only if you select Flat detection parameter.

Interrupt generate pin — Pin to generate flat detection interrupt
INT1 (default) | INT2

Select the pin on which the flat detection interrupt, which can be used by the C2000 board gets
generated on the sensor.

Dependencies

This parameter appears only if you select the Flat detection parameter.

Data ready — Enable interrupt when data is ready
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when data is
ready, allowing you to trigger other subsystems to perform any action.

Interrupt generate pin — Pin to generate data ready interrupt
INT1 (default) | INT2

Select the pin on which the data ready interrupt, which can be used by the C2000 board, gets
generated on the sensor.

Dependencies

This parameter appears only if you select the Enable data ready interrupt parameter.

Data type — Output data type for values from BMI160 sensor
single (default) | double

Specify the output data type for the values read from BMI160 sensor. The default data type for C2000
board is single. Use this parameter to change the values to double, if required.

Sample time — Time interval to read data
-1 (default) | positive integer

Specify how often this block reads the data from the BMI160 sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

Version History
Introduced in R2021b

 BMI160

2-303

BMM150
Measure magnetic field from BMM150 sensor

Libraries:
C2000 Microcontroller Blockset / Sensors

Description
The BMM150 block outputs the values of magnetic field along x-, y- and z- axes as measured by the
BMM150 sensor connected to C2000 board.

Ports
Output

Magnetic Field — Magnetic field strength measured by a BMM150 sensor
row vector

Magnetic field strength (in µT) measured by a BMM150 sensor connected to C2000 board, along the
x-, y- and z- axes, specified as a row vector [x,y,z].
Data Types: double

Magnetic Field Status — Status of magnetic field value
0 | 1

Status of magnetic field 0 indicates that the data read is new and 1 indicates that the data read is not
new.

Dependencies

This output port appears only if you select the Status parameter.
Data Types: int8

Parameters
I2C module — Module for communication
I2C_A (default)

The I2C module to be used for communication to the BMM150 sensor. The number of I2C modules
supported varies across different C2000 processors. You can find the supported I2C modules
corresponding to the processor (which you selected for the Hardware Board parameter in the
Simulink model) by opening the Configuration Parameters dialog box and checking the I2C specific
tabs under Target hardware resources.

I2C address — I2C address of BMM150 sensor
0x13 (default) | 0x10 | 0x11 | 0x12

2 Blocks

2-304

The I2C address used by BMM150 sensor communicating with the C2000 processor. The default
parameter value (0x13) corresponds to the value mentioned in the Schematics section of the
BOOSTXL-SENSORS BoosterPackTM Plug-in Module User's Guide.

Status — Set output port for obtaining magnetic field status
on (default) | off

Select this parameter to set Magnetic Field Status as one of the output ports.

Preset value — Preset value for the operating condition of BMM150 sensor
Low power (default) | Regular | Enhanced | High accuracy

Specify the preset value for the operating condition of BMM150 sensor while reading the values. The
selection of one of the four preset values affects the electrical characteristics (like supply current)
and the required output accuracy with respect to ODR and output noise.

Data type — Output data type for values from BMM150 sensor
single (default) | double

Specify the output data type for the values read from BMM150 sensor. The default data type for TI’s
C2000 processors is single. Use this parameter to change the values to double, if required.

Sample time — Time interval to read data
-1 (default) | positive integer

Specify how often this block reads the data from the BMM150 sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

Version History
Introduced in R2021b

 BMM150

2-305

BME280
Measure barometric air pressure, relative humidity, and temperature from BME280 sensor

Libraries:
C2000 Microcontroller Blockset / Sensors

Description
The BME280 block outputs the values of barometric air pressure and relative humidity as measured
by the BME280 sensor connected to C2000 board. The block also outputs the temperature as read by
the BME280 sensor.

Ports
Output

Pressure — Barometric air pressure measured by BME280 sensor
scalar

Barometric air pressure (in Pascal (Pa)) measured by a BME280 sensor that is connected to C2000
board.

Dependencies

This output port appears only if you select the Pressure (Pa) parameter.
Data Types: double

Temperature — Temperature measured by BME280 sensor
scalar

Temperature (in ℃) measured by BME280 sensor connected to C2000 board.

Dependencies

This output port appears only if you select the Temperature (℃) parameter.
Data Types: double

Humidity — Relative humidity measured by BME280 sensor
scalar

Relative humidity (in %) measured by BME280 sensor connected to C2000 board.

Dependencies

This output port appears only if you select the Humidity (%) parameter.
Data Types: double

2 Blocks

2-306

Status — Status of read values
0 | 1

Status of read values from the BME280 sensor, to indicate if the data read is the new value or not.
The Status value of 0 indicates that the data read is new and 1 indicates that the data read is not
new.

Dependencies

This output port appears only if you select the Status parameter.
Data Types: uint8

Parameters
I2C module — Module for communication
I2C_A (default)

The I2C module to be used for communication to the BME280 sensor. The number of I2C modules
supported varies across different C2000 processors. You can find the supported I2C modules
corresponding to the processor (which you selected for the Hardware Board parameter in the
Simulink model) by opening the Configuration Parameters dialog box and checking the I2C specific
tabs under Target hardware resources.

I2C address — I2C address of BME280 sensor
0x77 (default) | 0x76

The I2C address used by BME280 sensor communicating with the C2000 processor. The default
parameter value (0x77) corresponds to the value mentioned in the Schematics section of the
BOOSTXL-SENSORS BoosterPackTM Plug-in Module User's Guide.

Pressure (Pa) — Set output port for reading pressure
on (default) | off

Select this parameter to set Pressure as one of the output ports.

Temperature (℃) — Set output port for reading temperature
on (default) | off

Select this parameter to set Temperature as one of the output ports.

Humidity (%) — Set output port for reading humidity
on (default) | off

Select this parameter to set Humidity as one of the output ports.

Status — Set output port for obtaining status of values read
off (default) | on

Select this parameter to set Status as one of the output ports.

Filter coefficient — Filter coefficient for IIR filter
0 (default) | 2 | 4 | 8 | 16

 BME280

2-307

Specify filter coefficient for the IIR filter while reading pressure and temperature values from
BME280 sensor. Selecting a non-zero value for filter coefficient helps to improve the step response
and remove short-term fluctuations in the measured values.

Stand by time — Standby time to read values
0.5 (default) | 10 | 20 | 62.5 | 125 | 250 | 500 | 1000

Specify the standby time (in ms) when the processor stays idle (inactive duration) while reading
values from BME280 sensor. The selection of this value affects the total cycle time.

Pressure oversampling factor — Oversampling factor for the measured pressure value
1 (default) | 2 | 4 | 8 | 16

Specify the oversampling factor to reduce the noise for the pressure value read from BME280 sensor.
This value is a multiplication factor that affects measurement rate and current consumption.

Humidity oversampling factor — Oversampling factor for the measured humidity value
1 (default) | 2 | 4 | 8 | 16

Specify the oversampling factor to reduce the noise for the humidity value read from BME280 sensor.
This value is a multiplication factor that affects measurement rate and current consumption.

Temperature oversampling factor — Oversampling factor for the measured humidity value
1 (default) | 2 | 4 | 8 | 16

Specify the oversampling factor to reduce the noise for the temperature value read from BME280
sensor. This value is a multiplication factor that affects measurement rate and current consumption.

Data type — Output data type for values from BME280 sensor
single (default) | double

Specify the output data type for the values read from BME280 sensor. The default data type for TI’s
C2000 processors is single. Use this parameter to change the values to double, if required.

Sample time — Time interval to read data
-1 (default) | positive integer

Specify how often this block reads the data from the BME280 sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

Version History
Introduced in R2021b

2 Blocks

2-308

Read Data from IMU and Environmental Sensors

This example shows how to use C2000™ Microcontroller Blockset to read data from the BMI160
Inertial Measurement Unit (IMU) sensor and BME280 Environmental sensor that are part of the
BOOSTXL-SENSORS BoosterPack™ plug-in module.

The example also shows how to read data from another BMM150 geomagnetic sensor connected as a
breakout board to F28379D LaunchPad.

Required Hardware

• Texas Instruments™ F28379D LaunchPad
• BOOSTXL-SENSORS BoosterPack™ plug-in module, which includes built-in BMI160 Inertial

Measurement Sensor, BMM150 Geomagnetic Sensor and BME280 Environmental Sensor.
• BMM150 Geomagnetic Sensor on an I2C-based board to be connected as a breakout board to

F28379D LaunchPad.

Introduction

This example provides three Simulink models that use TI Delfino F28379D Launchpad as the
Hardware board:

• c28x_i2c_bmi160_sensor helps you to read acceleration, angular rate and magnetic field as
measured from both BMI160 and BMM150 sensors in the BOOSTXL-SENSORS module

• c28x_i2c_bme280_sensor helps you to read digital pressure and relative humidity as measured
from a BME280 sensor in the BOOSTXL-SENSORS module

• c28x_i2c_bmm150_sensor helps you to read magnetic field as measured from a BMM150 sensor
connected as a breakout board to F28379D LaunchPad

Model Configuration for Reading Data from BMI160 Sensor and BME280 Sensor

The model provided in this example for reading data from BMI160 sensor uses the corresponding
block, BMI160 provided with the blockset.

To open the model, run this command at the MATLAB prompt:

open_system('c28x_i2c_bmi160_sensor');

 Read Data from IMU and Environmental Sensors

2-309

matlab:c28x_i2c_bmi160_sensor
matlab:c28x_i2c_bme280_sensor
matlab:c28x_i2c_bmm150_sensor

In the BMI160 block in the model, the I2C module parameter is set to I2C_A. Therefore, to change
the clock frequency, if required, change the settings for the same. To do this:

1. Go to Hardware tab, and click Hardware Settings to open the Configuration Parameters dialog
box.

2. Go to Hardware Implementation > Target hardware resources, and select I2C_A tab.

3. Edit the values to change the clock frequency as required.

2 Blocks

2-310

4. Click Apply and then *OK.

The other model provided in this example for reading data from BME280 sensor uses the
corresponding block, BME280 provided with the blockset.

To open the model, run this command at the MATLAB prompt:

open_system('c28x_i2c_bme280_sensor');

 Read Data from IMU and Environmental Sensors

2-311

In the BME280 block in the above model, the I2C module parameter is set to I2C_A. Therefore, to
change the clock frequency, if required, change the settings by following the same steps as described
for BMI160.

You can also use the different options under Advanced settings inside the BME280 block to change
the values for the filtering and sampling factors.

Note: The I2C address parameter value selected in each of the blocks (BMI160 and BME280) in the
two models corresponds to the information provided in the Schematics section of the BOOSTXL-
SENSORS BoosterPack Plug-in Module User's Guide.

Complete Hardware Connections and Read Data from BMI160 Sensor

After you complete the configurations settings for the c28x_i2c_bmi160_sensor model, perform
these steps:

1. Connect the BOOSTXL-SENSORS plug-in module to the F28379D LaunchPad. Connect GPIO104
and GPIO105 pins on the F28379D Launchpad to the J1.10 (SDA) and J1.9 (SCL) pins respectively on
the BOOSTXL-SENSORS, and complete the other required connections like VDD and GND. For more
details, refer to the the Schematics section of the BOOSTXL-SENSORS BoosterPack Plug-in
Module User's Guide.

2. Connect the F28379D LaunchPad to the host computer.

2 Blocks

2-312

2. In the Configuration Parameters window of c28x_i2c_bmi160_sensor model, click Hardware
Implementation and navigate to Target hardware resources > External mode, and set the
Serial port in MATLAB Preferences parameter to the corresponding COM port to which the
Launchpad is connected. The COM port is available at Device Manager > Ports (COM & LTP) in
Windows.

3. Select appropriate GPIO pins for SDA and SCL in Hardware Implementation > I2C_A pane, to
communicate with BOOSTXL-SENSORS based on the actual hardware connections from the F28379D
Launchpad.

4. In the Hardware tab of Simulink model, click Monitor & Tune. You can observe from the
Diagnostic Viewer that the code is generated for the model and the host connects to the target after
loading the generated executable.

5. Rotate the board about its axis. You can observe that the value displayed in the Display block
connected to Angular Rate output of the block is changing.

6. Change the orientation of the board. You can observe that the value displayed in the Display block
connected to Acceleration output of the block is changing.

Complete Hardware Connections and Read Data from BME280 Sensor

After you complete the configurations settings for the c28x_i2c_bme280_sensor model, perform
the same steps 1 to 4 as described in the previous section to specify the connections and run the
model in External mode.

Then, observe the value displayed in the Display block connected to Pressure, Temperature, and
Humidity output ports of the block. These values correspond to the current environmental
conditions.

 Read Data from IMU and Environmental Sensors

2-313

Model Configuration for Reading Data from BMM150 Sensor Connected as Breakout Board

The model provided in this example for reading data from BMM150 sensor uses the corresponding
block, BMM150 provided with the blockset.

To open the model, run this command at the MATLAB prompt:

open_system('c28x_i2c_bmm150_sensor');

In the BMM150 block in the above model, the I2C module parameter is set to I2C_A. Therefore, to
change the clock frequency, if required, change the settings by following the same steps as described
for BMI160.

You can also use the different options under Preset value parameter inside the BMM150 block to
specify the optimum operating condition.

The board that you use can be a digital compass sensor based on BMM150 that uses an I2C interface.
Refer to the board's specifications for I2C connection to F28379D LaunchPad, and specify the value
for I2C address parameter accordingly.

2 Blocks

2-314

Complete Hardware Connections and Read Data from BMM150 Sensor

After you complete the configurations settings for the c28x_i2c_bmm150_sensor model, perform
these steps:

1. Connect the I2C-based board with the BMM150 sensor, to the F28379D LaunchPad, and complete
the other required connections.

2. Connect the F28379D LaunchPad to the host computer.

2. In the Configuration Parameters window of c28x_i2c_bmm150_sensor model, click Hardware
Implementation and navigate to Target hardware resources > External mode, and set the
Serial port in MATLAB Preferences parameter to the corresponding COM port to which the
Launchpad is connected. The COM port is available at Device Manager > Ports (COM & LTP) in
Windows.

3. Select appropriate GPIO pins for SDA and SCL in Hardware Implementation > I2C_A pane, to
communicate with I2C-based interface based on the actual hardware connections from the F28379D
Launchpad.

4. In the Hardware tab of Simulink model, click Monitor & Tune. You can observe from the
Diagnostic Viewer that the code is generated for the model and the host connects to the target after
loading the generated executable.

5. Observe the current value in the Display block connected to Magnetic Field output of the block.
Change the position of the board. You can observe that the value displayed in the Display block is
changing.

 Read Data from IMU and Environmental Sensors

2-315

Encode and Decode Serial Data Using C2000-based Hardware

This example shows how to use C2000™ Microcontroller Blockset to encode and decode serial data
with TI's™ C2000-based hardware.

Introduction

In this example, the Simulink model, performs these actions:

• At the transmission end, multiple fields are encoded into packet using Protocol Encoder block and
the resulting uint8 byte stream is transmitted using C28x SCI Transmit block.

• At the Receiving end, the byte stream is received using C28x SCI Receive block and decoded into
individual fields using Protocol Decoder block. The status output of SCI Receive block, which
indicates a new data is available, is used to trigger the enabled subsystem containing Protocol
Decoder block.

In this model, the Tx pin of SCI Module B sends serial data to the Rx pin of SCI Module B of the TI
Delfino F28379D LaunchPad.

This model is configured to run in XCP-based External mode. For more information on External mode,
see “Signal Monitoring and Parameter Tuning over XCP on Serial”.

open_system('c2000_encode_decode_packet');

The model provided in this example is preconfigured for the TI Delfino F28379D LaunchPad. You can
run this model on any of the TI boards available under the Hardware board parameter in the

2 Blocks

2-316

matlab:c2000_encode_decode_packet

Simulink model. For more information on how to change the Hardware board parameter, see the
Step 2: Configure the Model for Connected Hardware section of this example.

Required Hardware

To run this example, you must have the following hardware:

• Texas Instruments™ Delfino F28379D LaunchPad
• Connecting wires
• USB cable

Step 1: Connect TX and RX Pins on F28379D Launchpad

1. Connect your TI Delfino F28379D LaunchPad to your computer using the USB cable.

2. Connect the Tx pin of SCI B module (GPIO18 pin) to the Rx pin of SCI B module (GPIO19 pin). This
connection is a loopback connection.

Step 2: Configure the Model for Connected Hardware

1. Open the Simulink model model. This model is configured to run on XCP-based External mode.

2. To configure the model, click Hardware Settings in the Hardware tab of the Simulink toolbar.

3. In the Configurations Parameters dialog box, select Hardware Implementation.

4. From the Hardware board list, select the TI's C2000-based processor that you are using.

5. Under Target Hardware Resources, click SCI_B tab and configure the properties including baud
rate and pin assignments.

 Encode and Decode Serial Data Using C2000-based Hardware

2-317

matlab:c2000_encode_decode_packet

If you are using any other GPIO pins for communication, change the Pin assignment parameter
value selection accordingly.

6. Click Apply. Click OK to close the dialog box.

Step 3: Configure Blocks in the Simulink Model

The packet structure used in this example is:

Double-click the blocks and verify the parameter values specified in the Block Parameters dialog box.

2 Blocks

2-318

For other blocks, the parameters are:

 Block | Parameter Name | Value

 Constant | Interpret vector parameters as 1-D | selected
 | Sample time | inf
 SCI Transmit | SCI module | B
 SCI Receive | SCI module | B
 | Data type | uint8
 | Data length | 10
 | Sample time | 0.1
 Display Status | Format | short

The value for Data length parameter of SCI Receive block is set to 10, which is the sum of these
values:

Header size (1 byte) + Data1 (1 byte) + Data2 (2 bytes) + Data3 (4 bytes) + Checksum (1 byte) + Terminator (1 byte)

 Encode and Decode Serial Data Using C2000-based Hardware

2-319

Step 4: Run the Model in XCP-based External Mode

You can simulate the model in XCP-based External mode, which deploys the model as a C code on the
hardware. The code obtains real-time data from the hardware.

Set Up the Model for XCP-based External Mode

1. To configure the model, click Hardware Settings in the Hardware tab of the Simulink toolbar.

2. In the Configurations Parameters dialog box, select Hardware Implementation.

3. Under Target Hardware Resources, click External mode tab and select XCP on Serial and
SCI_A for Communication interface and SCI module parameters respectively. Select the
corresponding value for the COM port of the host computer to which the C2000-based processor is
connected.

4. Click Apply. Click OK to close the dialog box.

The Stop Time (under Simulation tab) is already set to inf.

Run the Model on XCP-based External Mode

1. To tune parameters and monitor signals in this model while the application runs on the target
hardware, on the Hardware tab, click Monitor & Tune.

The lower left corner of the model window displays status while Simulink prepares, downloads, and
runs the model on the hardware.

At each time step, data specified in the Constant blocks are encoded into uint8 byte stream (packet)
and transmitted by the TX1 pin to the RX1 pin of your C2000-based processor. You can see the uint8
byte stream generated as per the packet structure in the Display encoded data block.

The RX1 pin receives the uint8 byte stream which is decoded using Protocol Decoder block and
displays it on the Display Decoded data blocks. Observe the output in the Display Decoded
data blocks which will be same as the value given in the Constant blocks at the transmission end.

2. Try changing the values in the Constant blocks connected as input to the Protocol Encoder block,
and observe if the same values are getting decoded by the Protocol Decoder block.

3. To stop running the model, click Stop.

Other Things to Try

• Try specifying a different packet structure using the block properties and observe the encoded
data and decoded data in the Display blocks.

2 Blocks

2-320

More About

• Protocol Encoder
• Protocol Decoder

 Encode and Decode Serial Data Using C2000-based Hardware

2-321

ADXL34x Accelerometer
Measure linear acceleration along axes of ADXL34x family of accelerometers

Libraries:
C2000 Microcontroller Blockset / Sensors

Description
The ADXL34x Accelerometer block reads data from the ADXL34x family of accelerometers (ADXL343,
ADXL344, ADXL345, and ADXL346) with C2000 board.

You can use this block to measure linear acceleration along the X, Y and Z-axes. The block also
provides the option to enable the data ready interrupt.

The block outputs acceleration as a 1-by-3 array.

Ports
Output

Acceleration — Linear acceleration measured by ADXL34x sensor
vector

This port outputs the linear acceleration (in m/s2) along the x-, y- and z-axes as a 1-by-3 array.
Data Types: double

Note It is observed that there are many faulty cloned ADXL345 sensors available in the market, with
Z axis raw output becoming unresponsive. Buy the sensor from a genuine distributor to avoid this
issue.

Parameters
I2C module — Module for communication
I2C_A (default)

The I2C module to be used for communication to the ADXL34x sensor. The number of I2C modules
supported varies across different C2000 processors. You can find the supported I2C modules
corresponding to the processor (which you selected for the Hardware Board parameter in the
Simulink model) by opening the Configuration Parameters dialog box and checking the I2C specific
tabs under Target hardware resources.

I2C address — I2C address of ADXL34x sensor
0x53 (default) | 0x1D

The I2C address of the ADXL34x sensor from which the block reads the values.

2 Blocks

2-322

The ADXL34x sensor can have two I2C addresses depending on the logic level on pin ALT of the
sensor.

Pin Name Pin State I2C Address
ALT Low 0x53

High 0x1D

Data type — Output data type for values from ADXL34x sensor
single (default) | double

Select the data type of the sensor from which the block reads the values.

Specify the output data type for the values read from ADXL34x sensor. The default data type for
C2000 board is single. Use this parameter to change the values to double, if required.

Sample time — Time interval to read data
-1 (default) | positive integer

Specify how often this block reads the data from the ADXL34x sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

Advanced settings

Accelerometer range — Full scale for measuring linear acceleration
±4g (default) | ±2g | ±8g | ±16g

Select the range of acceleration that the accelerometer can measure.

Accelerometer output data rate — Rate at which accelerometer data is sampled
12.5 Hz (default) | 0.1 Hz | 0.2 Hz | 0.39 Hz | 0.78 Hz | 1.56 Hz | 3.13 Hz | 6.25 Hz | 25 Hz
| 50 Hz | 100 Hz | 200 Hz | 400 Hz | 800 Hz | 1600 Hz

Select the output data rate at which accelerometer data is sampled.

Enable data ready interrupt — Enable interrupt when data is ready
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 or INT2 of the sensor when data is
ready, allowing you to trigger other subsystems to perform any action.

Interrupt generate pin — Pin to generate data ready interrupt
INT1 (default) | INT2

Select the interrupt generate pin to read accelerometer data.

Dependencies

To enable this parameter, select the Enable data ready interrupt parameter.

Version History
Introduced in R2022a

 ADXL34x Accelerometer

2-323

See Also
Topics
“Workaround to reset interrupt pin of sensors supporting latched interrupts”

2 Blocks

2-324

LIS3DH Accelerometer Sensor
Measure linear acceleration, voltage, and temperature from LIS3DH sensor

Libraries:
C2000 Microcontroller Blockset / Sensors

Description
The LIS3DH Accelerometer Sensor block measures linear acceleration, voltages on external input
pins (ADC1, ADC2 and ADC3) of the sensor, and temperature using the LIS3DH Accelerometer sensor
interfaced with the C2000 board.

The block also provides the option to enable the high pass filter, FIFO and FIFO interrupt. An
interrupt is generated if Generate data ready interrupt is selected. After selecting Generate data
ready interrupt, if FIFO is disabled data ready interrupt is generated and if FIFO is enabled FIFO
interrupt is generated.

The block outputs status of acceleration measurement, specified as a value 0, 1, or 2. The value 0
indicates that the data read is new, 1 indicates that the data read is not new, and 2 indicates that the
data is overwritten.

The block outputs single / double click axis as a 1-by-3 vector. The click axis provides information of
the axis, on which click is detected. The axis value displays 1 when a click is detected otherwise it
displays 0.

The block supports inertial wake-up, free-fall, 6D position, 6D movement, 4D position and 4D
movement recognition. The block outputs inertial wake-up axis as a 1-by-3 vector. This provides
information of the axis, on which inertial wake-up is detected. The 6D position axis and 6D movement
axis are of size 1-by-6. The 4D position and 4D movement axis are of size 1-by-4. The status contains
the information about the axis, on which the detection is recognized. The status value displays 1
when the configured detection is recognized on the selected axis, otherwise it displays 0.

Ports
Output

Acceleration — Acceleration along each axis as measured by accelerometer
vector

The block outputs acceleration as a 1-by-3 vector when FIFO is disabled. When FIFO is enabled, the
block outputs n-by-3 vector, where n is the number of samples on page 2-0 . Each value represents
the measurement of acceleration in m/s^2 along the X, Y, and Z axes.

Dependencies

This output port appears only if you select the Acceleration (m/s2) parameter.
Data Types: single | double | int16

 LIS3DH Accelerometer Sensor

2-325

ADC1 Voltage — Voltage on external pin ADC1
vector

The block outputs voltage applied on external pin ADC1 of the LIS3DH sensor.
Dependencies

This output port appears only if you select the Voltage (external input at ADC1) parameter.
Data Types: single | double | int16

ADC2 Voltage — Voltage on external pin ADC2
vector

The block outputs voltage applied on external pin ADC2 of the LIS3DH sensor.
Dependencies

This output port appears only if you select the Voltage (external input at ADC2) parameter.
Data Types: single | double | int16

ADC3 Voltage — Voltage on external pin ADC3
vector

The block outputs voltage applied on external pin ADC3 of the LIS3DH sensor.
Dependencies

This output port appears only if you select Voltage (external input) for ADC3 input
parameter.
Data Types: single | double | int16

Temperature — Temperature measured by LIS3DH sensor
scalar

Temperature (in ℃) measured by LIS3DH sensor connected to C2000 board.
Dependencies

This output port appears only if you select Temperature for ADC3 input parameter.
Data Types: single | double | int16

Accelration Status — Status of acceleration measurement
2 | 0 | 1

Status of acceleration measurement, specified as a value 0, 1, or 2. The value 0 indicates that the
data read is new, 1 indicates that the data read is not new, and 2 indicates that the data is
overwritten.

If Enable FIFO is selected, then 0 indicates that the specified samples are collected, 1 indicates that
specified number of samples are not collected, and 2 indicates that the data is overwritten.
Dependencies

This output port appears only if you select the Acceleration data ready Status parameter.
Data Types: uint8

2 Blocks

2-326

Samples pending — Number of pending samples
scalar

The block outputs the number of pending samples to be read as a value ranging from 0-32.

Dependencies

This output port appears only if you select the Enable FIFO parameter.
Data Types: uint8

Click status [X,Y,Z] — Click detection status
0 | 1

The block outputs the Click status of axes as a 1-by-3 vector (x,y,z) indicating on which axis the click
has been detected. The axis value 1 indicates that the click is detected on that axis and 0 indicates
that the click is not detected.

Dependencies

This output port appears only if you select the click status parameter.
Data Types: uint8

Inertial wake-up status [X,Y,Z] — Status of inertial wake-up interrupt
0 | 1

The block outputs inertial wake-up status as a 1-by-3 vector. This provides information of the axis, on
which inertial wake-up is detected. The value 1 indicates that the inertial wake-up event is detected
on the selected axis and value 0 indicates the event is not detected.

Dependencies

This parameter appears only if you select Inertial wake-up from Detect parameter and select
Detection status parameter.
Data Types: uint8

Free-fall status — Status of free-fall
0 | 1

The block outputs free-fall status. The value 1 indicates that the free-fall is detected on the selected
axis and 0 indicates the interrupt is not detected.

Dependencies

This parameter appears only if you select Free-fall from Detect parameter and select Detection
status parameter.
Data Types: uint8

6D position status [X, -X, Y, -Y, Z, -Z] — Status of 6D position
0 | 1

The block outputs 6D position status as a 1-by-6 vector. The value 1 indicates that the 6D position
interrupt is detected on the selected axis and 0 indicates the interrupt is not detected.

 LIS3DH Accelerometer Sensor

2-327

Dependencies

This parameter appears only if you select 6D position from Detect parameter and select
Detection status parameter.
Data Types: uint8

6D movement status [X, -X, Y, -Y, Z, -Z] — Status of 6D movement
0 | 1

The block outputs 6D movement status as a 1-by-6 vector. The value 1 indicates that the 6D
movement interrupt is detected on the selected axis and 0 indicates the interrupt is not detected.

Dependencies

This parameter appears only if you select 6D movement from Detect parameter and select
Detection status parameter.
Data Types: uint8

4D position status [X, -X, Y, -Y] — Status of 4D position
0 | 1

The block outputs 4D position status as a 1-by-4 vector. The value 1 indicates that the 4D position
interrupt is detected on the selected axis and 0 indicates the interrupt is not detected.

Dependencies

This parameter appears only if you select 4D position from Detect parameter and select
Detection status parameter.
Data Types: uint8

4D movement status [X, -X, Y, -Y] — Status of 4D movement
0 | 1

The block outputs 4D movement status as a 1-by-4 vector. The value 1 indicates that the 4D
movement interrupt is detected on the selected axis and 0 indicates the interrupt is not detected.

Dependencies

This parameter appears only if you select 4D movement from Detect parameter and select
Detection status parameter.
Data Types: uint8

Parameters
Main

I2C Module — Specific module used for I2C communication
I2C_A (default)

Specify the module on the board that you are using for I2C communication.

I2C address — I2C addresses to communicate with sensor peripherals
0x18 (default) | 0x19

2 Blocks

2-328

The I2C addresses to communicate with the accelerometer peripheral on the LIS3DH sensor are
decided by the state of the SA0 pin on the hardware board. This table provides the I2C addresses
corresponding to the pin and their state.

Pin Name Pin State I2C Address
SA0 0 0x18

1 0x19

Acceleration (m/s2) — Set output port for reading acceleration
on (default) | off

Select this parameter to set Acceleration as one of the output ports.

ADC3 input — Select output port for reading temperature or voltage
None (default) | Temperature | Voltage (external input)

Select Temperature to set Temperature as one of the output ports or select Voltage (external
input) to set ADC3 Voltage as one of the output port.

Voltage (external input at ADC1) — Select output port for reading voltage
off (default) | on

Select this parameter to set ADC1 Voltage as one of the output ports.

Voltage (external input at ADC2) — Select output port for reading voltage
off (default) | on

Select this parameter to set ADC2 Voltage as one of the output ports.

Acceleration data ready status — Set output port for obtaining acceleration status
on (default) | off

Select this parameter to set Acceleration status as one of the output ports.

Accelerometer resolution — Data register bit resolution
12bit (default) | 10bit | 8bit

Select the data register bit resolution for the sensor.

Accelerometer output data rate (Hz) — Rate at which accelerometer data is sampled
400 Hz (default) | 1 Hz | 10 Hz | 25 Hz | 50 Hz | 100 Hz | 200 Hz | 1344 Hz

Select the output data rate at which accelerometer data is sampled.

Accelerometer range — Full scale for measuring linear acceleration
±2g (default) | ±4g | ±8g | ±16g

Select the full scale for measuring linear acceleration (the range of acceleration that the sensor
needs to measure).

Enable FIFO — Enable number of samples to read
off (default) | on

Select this option to enable the option Number of samples to read from FIFO (1-32), which
allows you to set the number of samples to be read.

 LIS3DH Accelerometer Sensor

2-329

Number of samples to read from FIFO (1-32) — Number of samples to read
2 (default)

Enter a value for number of samples (1-32) to be read from FIFO.

Dependencies

This parameter appears only if you select the Enable FIFO parameter.

Generate FIFO overrun interrupt on INT1 pin — Generate interrupt when FIFO buffer is full
off (default) | on

Select this option to receive an interrupt if the FIFO buffer gets filled and the first sample is
overwritten.

Dependencies

This parameter appears only if you select the Enable FIFO parameter.

Enable high pass filter — Enable high pass filter for accelerometer data
off (default) | on

Enable the high pass filter for reading accelerometer values.

HPF cutoff frequency (Hz) — Bandwidth of high pass filter
100 Hz (default) | 12 Hz | 25 Hz | 50 Hz

Select the required bandwidth of the high pass filter for reading accelerometer values. The HPF
cutoff frequency depends on the Accelerometer output data rate (Hz). The HPF cutoff frequencies for
the selected Accelerometer output data rate (Hz) are shown in this table. The values 00, 01, 10, and
11 are the HPF mode configurations.

HPF cutoff frequency

HPF
cutoff
frequen
cy[2:1]

Acceler
ation
output
data
rate - 1
Hz

Acceler
ation
output
data
rate -
10 Hz

Acceler
ation
output
data
rate -
25 Hz

Acceler
ation
output
data
rate -
50 Hz

Acceler
ation
output
data
rate -
100 Hz

Acceler
ation
output
data
rate -
200 Hz

Acceler
ation
output
data
rate -
400 Hz

Acceler
ation
output
data
rate -
1600 Hz

Acceler
ation
output
data
rate -
5376 Hz

00 0.02 0.2 0.5 1 2 4 8 32 100
01 0.008 0.08 0.2 0.5 1 2 4 16 50
10 0.004 0.04 0.1 0.2 0.5 1 2 8 25
11 0.002 0.02 0.05 0.1 0.2 0.5 1 4 12

Dependencies

This parameter appears only if you select the Enable high pass filter parameter.

Generate data ready interrupt on INT1 pin — Generate interrupt when data is ready
off (default) | on

If this option is selected, an interrupt is generated on pin INT1 of the sensor when data is ready,
allowing you to trigger other subsystems to perform any action.

2 Blocks

2-330

Data type — Output data type for values from lis3dh sensor
single (default) | double | int16

Specify the output data type for the values read from lis3dh sensor. The default data type for C2000
board is single. Use this parameter to change the values to double or int16, if required.

Sample time — Time interval to read data
-1 (default) | positive integer

Specify how often this block reads the data from the LIS3DH sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

Click detection

Enable click detection — Option for enabling click detection
off (default) | on

Select this parameter to enable click detection.

Type — Select type of click to be detected
Single click (default) | Double click

Select the type of click to be detected. The available options are Single click and Double click.

Dependencies

This parameter appears only if you select Enable click detection parameter.

Threshold (m/s2) — Threshold for detecting single or double click
1.5 (default)

Specify the threshold for detecting single click or double click. When the value crosses the specified
threshold value, click is detected.

Dependencies

This parameter appears only if you select Enable click detection parameter.

Time limit (s) — Time limit duration
0.3 (default) | positive integer

Specify the time limit value in seconds for detecting single click or double click. The click must occur
during the specified time limit for detecting single click or double click.

Dependencies

This parameter appears only if you select Enable click detection parameter.

Time latency (s) — Time latency duration
0.3 (default) | positive integer

Specify the time latency value in seconds for detecting double click. The second click must occur
after the specified time latency period for detecting a double click.

 LIS3DH Accelerometer Sensor

2-331

Dependencies

This parameter appears only if you select Enable click detection parameter and select Double
click option for Type parameter.

Time window (s) — Time window duration
0.3 (default) | positive integer

Specify the time window value in seconds for detecting double click. The second click must occur
before the time window period expires for detecting double click.

Dependencies

This parameter appears only if you select Enable click detection parameter and select Double
click option for Type parameter.

X axis — Click detection in X axis
on (default) | off

Select this option to enable click detection along X axis. The value 1 indicates that the click is
detected and 0 indicates that the click is not detected

Dependencies

This parameter appears only if you select Enable click detection parameter.

Y axis — Click detection in Y axis
on (default) | off

Select this option to enable click detection along Y axis. The value 1 indicates that the click is
detected and 0 indicates that the click is not detected

Dependencies

This parameter appears only if you select Enable click detection parameter.

Z axis — Click detection in Z axis
off (default) | on

Select this option to enable click detection along Z axis. The value 1 indicates that the click is
detected and 0 indicates that the click is not detected

Dependencies

This parameter appears only if you select Enable click detection parameter.

Generate click interrupt — Generate interrupt when click is detected
off (default) | on

Select the option to generate an interrupt if a click is detected.

Dependencies

This parameter appears only if you select Enable click detection parameter.

Interrupt pin — Pin to generate click interrupt
INT1 (default) | INT2

2 Blocks

2-332

If this option is selected, an interrupt is generated on pin INT1 or IN2 of the sensor when data is
ready, allowing you to trigger other subsystems to perform any action.

Dependencies

This parameter appears only if you select Generate click interrupt parameter.

Click status — Set output port for obtaining click detection status
off (default) | on

Select this parameter to set Click status [X,Y,Z] as one of the output ports.

Dependencies

This parameter appears only if you select Enable click detection parameter.

Configurable detections

Configurable detections — Set number of configurable detections
0 (default) | 1 | 2

Select the required option for the number of configurable detections.

Configurable detections 1

Detect — Select interrupt
Inertial wake-up (default) | Free-fall | 6D position | 6D movement | 4D position | 4D
movement

Select the required feature of the sensor. (Inertial wake-up, Free-fall, 6D position, 6D movement, 4D
position, 4D movement).

Dependencies

This parameter appears only if you select 1 or 2 from Configurable detections parameter.

X axis — Interrupt detection in X axis
on (default) | off

Select this option to enable the configurable event detection status on X axis. The value 1 indicates
that the event is detected and 0 indicates that the event is not detected.

Dependencies

This parameter appears only if you select Inertial wake-up or 6D position or 6D movement or
4D position or 4D movement from Detect parameter.

Y axis — Interrupt detection in Y axis
on (default) | off

Select this option to enable the configurable event detection status on Y axis. The value 1 indicates
that the event is detected and 0 indicates that the event is not detected.

Dependencies

This parameter appears only if you select Inertial wake-up or 6D position or 6D movement or
4D position or 4D movement from Detect parameter.

 LIS3DH Accelerometer Sensor

2-333

Z axis — Interrupt detection in Z axis
on (default) | off

Select this option to enable the configurable event detection status on Z axis. The value 1 indicates
that the event is detected and 0 indicates that the event is not detected.
Dependencies

This parameter appears only if you select Inertial wake-up or 6D position or 6D movement
from Detect parameter.

-X axis — Interrupt detection in -X axis
off (default) | on

Select this option to enable the configurable event detection status on -X axis. The value 1 indicates
that the event is detected and 0 indicates that the event is not detected.
Dependencies

This parameter appears only if you select 6D position or 6D movement or 4D position or 4D
movement from Detect parameter.

-Y axis — Interrupt detection in -Y axis
off (default) | on

Select this option to enable the configurable event detection status on -Y axis. The value 1 indicates
that the event is detected and 0 indicates that the event is not detected.
Dependencies

This parameter appears only if you select 6D position or 6D movement or 4D position or 4D
movement from Detect parameter.

-Z axis — Interrupt detection in -Z axis
off (default) | on

Select this option to enable the configurable event detection status on -Z axis. The value 1 indicates
that the event is detected and 0 indicates that the event is not detected.
Dependencies

This parameter appears only if you select 6D position or 6D movement from Detect parameter.

Threshold (m/s2 — Acceleration threshold for detecting the selected configurable detection
1.5 (default)

Specify the threshold for detecting the selected configurable detection. When the acceleration value
crosses the specified threshold value, the event is detected.
Dependencies

This parameter appears only if you select 1 or 2 from Configurable detections parameter.

Duration (s) — Time limit duration
0.3 (default) | positive integer

Specify the time limit for detecting the configurable event. To detect an event, the Threshold criteria
must be satisfied for a minimum time equal to Duration.

2 Blocks

2-334

Dependencies

This parameter appears only if you select 1 or 2 from Configurable detections parameter.

Generate interrupt — Generate interrupt
off (default) | on

If this option is selected, an interrupt is generated for the selected configurable detection.

Dependencies

This parameter appears only if you select 1 or 2 from Configurable detections parameter.

Interrupt pin — Pin to generate interrupt
INT1 (default) | INT2

If this option is selected, an interrupt is generated on pin INT1 or IN2 of the sensor when the
configurable event is detected, allowing you to trigger other subsystems to perform any action.

Dependencies

This parameter appears only if you select the Generate interrupt parameter.

Note Parameters for Configuration detections 2 are similar to Configuration detections 1. For
information to configure these parameters, see “Configurable detections 1” on page 2-0 .

Version History
Introduced in R2022b

See Also
Topics
“Workaround to reset interrupt pin of sensors supporting latched interrupts”

 LIS3DH Accelerometer Sensor

2-335

BMP280 Pressure Sensor
Measure barometric air pressure and ambient temperature from BMP280 sensor

Libraries:
C2000 Microcontroller Blockset / Sensors

Description
The BMP280 Pressure Sensor block measures barometric air pressure and ambient temperature
using the BMP280 Pressure sensor interfaced with the C2000 board.

Ports
Output

Pressure — Barometric air pressure
scalar

The block outputs barometric air pressure in Pascal (Pa).

Dependencies

This output port appears only if you select the Pressure (Pa) parameter.
Data Types: double

Temperature — Ambient temperature
scalar

The block outputs the ambient temperature in ℃.

Dependencies

This output port appears only if you select the Temperature (℃) parameter.
Data Types: double

Status — Status of values read for pressure and temperature
0 | 1

The block outputs the status of barometric air pressure and ambient temperature measurements. 0
indicates that the data read is new, 1 indicates that the data read is not new.

Dependencies

This output port appears only if you select the Status parameter.
Data Types: uint8

2 Blocks

2-336

Parameters

I2C Module — Specific module used for I2C communication
I2C_A (default)

Specify the module on the board that you are using for I2C communication.

I2C address — I2C address to communicate with the BMP280 sensor
0x76 (default) | 0x77

The I2C addresses to communicate with the peripheral on the BMP280 sensor are decided by the
state of the SDO pin on the hardware board. This table provides the I2C addresses corresponding to
the pin and their state.

Pin Name Pin State I2C address
SDO 0 0x76

1 0x77

Pressure (Pa) — Set output port for reading pressure
on (default) | off

Select this parameter to set Pressure as one of the output ports.

Temperature (℃) — Set output port for reading temperature
on (default) | off

Select this parameter to set Temperature as one of the output ports.

Status — Set output port for obtaining status of selected outputs
on (default) | off

Select this parameter to set Status as one of the output ports.

Data type — Output data type for values from BMP280 sensor
single (default) | double | uint32

Select the data type of the sensor from which the block reads the values.

Specify the output data type for the values read from BMP280 sensor. The default data type for
C2000 hardware is single. Use this parameter to change the values to double, or uint32 if
required.

Sample time — Time interval to read data
-1 (default) | positive integer

Specify how often this block reads the data from the BMP280 sensor. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context within the
model.

IIR filter settings

Filter coeffiecient — Filter coefficient value
0 (default) | 2 | 4 | 8 | 16

 BMP280 Pressure Sensor

2-337

Select the filter coefficient value of the sensor, which helps in reducing the bandwidth of output
signals.

The default filter coefficient value for C2000 hardware is 0. Use this parameter to change the values,
if required.

Sensitivity

Pressure sensitivity factor (Pa) — Pressure sensitivity factor
2.62 (default) | 1.31 | 0.66 | 0.33 | 0.16

Select the pressure sensitivity factor, which the sensor uses to read values during changing air
pressure.

The default data type for C2000 hardware is 2.62. Use this parameter to change the values, if
required.

When filter is enabled, the sensor uses this formula to get the latest measurement calculation.

dt = (dadc / f) + dt-1 (1 - 1 / f), where dt is the current data, dt-1 is the previous data, dadc
is the prefiltered data, and f is the filter coefficient.

Temperature sensitivity factor (℃) — Temperature sensitivity factor
0.005 (default) | 0.0025

Select the temperature sensitivity factor, which the sensor uses to read values during changing
temperature conditions.

The default data type for C2000 hardware is 0.005. Use this parameter to change the values, if
required.

Version History
Introduced in R2022b

2 Blocks

2-338

C280x/C2802x/C2803x/C2805x/C2806x/C2833x/
C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F2838x-M4/F28004x/F28002x/F28003x GPIO
Digital Input
Configure general-purpose input/output pins as digital input

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F2838x / M4
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M35x / M3
C2000 Microcontroller Blockset / F28M36x / C28x
C2000 Microcontroller Blockset / F28M36x / M3

Description
This block configures the general-purpose I/O (GPIO) MUX registers that control the operation of
GPIO shared pins for digital input. Each I/O port has one MUX register that selects peripheral
operation or digital I/O operation (the default). When a pin is configured for digital input, it becomes
unavailable for digital output or peripheral operation. You can configure the Input qualification
type for individual digital input pins. To configure, go to Configuration Parameters > Hardware
Implementation > Target Hardware Resources and select the appropriate GPIO group.

Each processor has a different number of available GPIO pins.

Note To avoid losing new settings, click Apply before changing the GPIO Group parameter.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F2838x-M4/F28004x/F28002x/
F28003x GPIO Digital Input

2-339

Ports
Output

Pin # — GPIO pin status
scalar | vector

The port outputs the status of the digital pin you select in the GPIO Group parameter.

Parameters
GPIO Group — GPIO pins you want to configure
GPIO0-GPIO7 (default) | GPIO8-GPIO15GPIO16-GPIO23…

Select the group of GPIO pins you want to view or configure. For a table of GPIO pins and
peripherals, refer to the Texas Instruments documentation for your specific target.

Sample time — Frequency at which block reads input pin values
-1 (default) | 0.1

Specify how often the block receives message, in seconds. When you specify this parameter as -1,
Simulink determines the best sample time for the block based on the block context within the model.

For more information, refer to the section on “Specify Sample Time”.

Data type — Data type of GPIO input
auto (default) | unit8 | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Specify the data type of the input. The input is read as 16-bit integer, and then cast to the selected
data type.

Version History
Introduced in R2016a

See Also
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F2838x-M4/F28004x/F28002x GPIO Digital Output

2 Blocks

2-340

C280x/C2802x/C2803x/C2805x/C2806x/C2833x/
C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F2838x-M4/F28004x/F28002x/F28003x GPIO
Digital Output
Configure general-purpose input/output pins as digital input

Libraries:
C2000 Microcontroller Blockset / C2802x
C2000 Microcontroller Blockset / C2803x
C2000 Microcontroller Blockset / C2805x
C2000 Microcontroller Blockset / C2806x
C2000 Microcontroller Blockset / C280x
C2000 Microcontroller Blockset / C281x
C2000 Microcontroller Blockset / C2833x
C2000 Microcontroller Blockset / C2834x
C2000 Microcontroller Blockset / F28002x
C2000 Microcontroller Blockset / F28003x
C2000 Microcontroller Blockset / F28004x
C2000 Microcontroller Blockset / F2807x
C2000 Microcontroller Blockset / F2837xD
C2000 Microcontroller Blockset / F2837xS
C2000 Microcontroller Blockset / F2838x / C28x
C2000 Microcontroller Blockset / F2838x / M4
C2000 Microcontroller Blockset / F28M35x / C28x
C2000 Microcontroller Blockset / F28M35x / M3
C2000 Microcontroller Blockset / F28M36x / C28x
C2000 Microcontroller Blockset / F28M36x / M3

Description
This block configures the general-purpose I/O (GPIO) MUX registers that control the operation of
GPIO shared pins for digital input. Each I/O port has one MUX register that selects peripheral
operation or digital I/O operation (the default). When a pin is configured for digital input, it becomes
unavailable for digital output or peripheral operation. You can configure the Input qualification
type for individual digital input pins. To configure, go to Configuration Parameters > Hardware
Implementation > Target Hardware Resources and select the appropriate GPIO group.

Each processor has a different number of available GPIO pins.

Note To avoid losing new settings, click Apply before changing the GPIO Group parameter.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F2838x-M4/F28004x/F28002x/
F28003x GPIO Digital Output

2-341

Ports
Input

Input — Set the GPIO pin status
scalar | vector

The input port to set the GPIO pin status.

Parameters
GPIO Group — GPIO pins you want to configure
GPIO0-GPIO7 (default) | GPIO8-GPIO15GPIO16-GPIO23…

Select the group of GPIO pins you want to view or configure. For a table of GPIO pins and
peripherals, refer to the Texas Instruments documentation for your specific target.

GPIO pins for output — GPIO pins you want to configure
GPIO0 (default) | GPIO8GPIO16…

To configure a GPIO pin for digital output, select the check box next to it. Refer to the block for a
table of all available peripherals for each pin.

A value of True at the input of the block drives the selected GPIO pin high. A value of False at the
input of the block grounds the selected GPIO pin.

Toggle GPIO# — GPIO pins you want to configure
Toggle GPIO0 (default) | Toggle GPIO1…

For each pin selected for output, you can elect to toggle the signal of that pin. In Toggle mode, a
value of True at the input of the block switches the GPIO pin output level. Thus, if the GPIO pin was
driven high, in Toggle mode, with the value of True at the input, the pin output level is driven low. If
the GPIO pin was driven low, in Toggle mode, with the value of True at the input of the block, the
same pin output level is driven high. If the input of the block is False, the GPIO pin output level is
unaffected.

Note The outputs of this block can be vectorized.

Version History
Introduced in R2016a

See Also
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/
F2838x-M4/F28004x/F28002x GPIO Digital Input

2 Blocks

2-342

C2802x/C2803x/C2806x/F28M3x AnalogIO Input
Configure pin, sample time, and data type for analog input

Description
Use this block to sample the voltage on Analog IO pins and output the results.

Parameters
Parameters (Input pins)

Select the input pins to sample.
Sample time

Specify the time interval between samples. To inherit sample time from the upstream block, set
this parameter to -1.

Data type
Select the data type of the digital output data. If you select auto, the block automatically selects
the data type for your model. You can also manually select a data type. You can choose from the
options double, single, int8, uint8, int16, uint16, int32, and uint32.

See Also
C2802x/C2803x/C2806x/F28M3x AnalogIO Output

 C2802x/C2803x/C2806x/F28M3x AnalogIO Input

2-343

C2802x/C2803x/C2806x/F28M3x AnalogIO Output
Configure Analog IO to output analog signals on specific pins

Description
Use this block to drive the output voltage of Analog IO pins.

In regular mode, a value of True at the input of the block pulls the Analog IO pin high while a value of
False grounds the pin.

In toggle mode, a value of True at the input of the block switches the actual output level of the Analog
IO pin while a value of False does not alter the output level of the Analog IO pin.

Parameters
Parameters (Output Pins)

Select the analog output pins. Selecting Toggle inverts the output voltage levels of the pins if the
input of the block is True.

See Also
C2802x/C2803x/C2806x/F28M3x AnalogIO Input

2 Blocks

2-344

Byte Unpack
Unpack 8-, 16-, or 32-bit input vector to multiple output vectors

Libraries:
C2000 Microcontroller Blockset / Target Communication

Description
The Byte Unpack block converts a vector of uint8, uint16, or uint32 data type to one or more
signals of user-selectable data types. This block is the inverse of the Byte Pack block. The input of this
block connects to an output port of a receive block, such as SPI Receive, SCI Receive, or UDP
Receive. The Receive block then transmits signals across various communication networks, such as
SPI, SCI, UDP, or I2C.

Input/Output Ports
Input

Port_1 — Packed data
scalar | vector | matrix

Receives a vector of packed data.
Data Types: uint8 | uint16 | uint32

Output

Port_1 — First of N output ports
scalar | vector | matrix

The block can have from 1 to N output ports, as specified by elements of the cell array in the
parameter Output port data types (cell array).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Output port dimensions (cell array) — Dimensions of each output port (unpacked)
{[1]} (default) | {[N], [M], ...}

Output port dimensions specified as a cell array of vectors.

Specify the same dimensions that you set for the corresponding Byte Pack block in the model.

Output port data types (cell array) — Data types for unpacked output signals
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

 Byte Unpack

2-345

Data types of the output ports (unpacked) specified for different output signals as a cell array. The
number of elements in the cell array determines the number of output ports shown by this block
instance.

Specify the same data types that you set in the Input port data types (cell array) parameter for the
corresponding Byte Pack block in the model.

Byte alignment — Alignment of output signal data types before unpacking
1 (default) | 2 | 4 | 8

Each element in the input signals list starts at a multiple of the byte alignment value, specified from
the start of the vector. If the byte alignment value is larger than the size of the data type in bytes, the
output values are padded with zeros to fill the space allotted.

For example, if the byte alignment value is 4, a uint32 receives no padding, a uint16 receives 2
bytes of padding, and a uint8 receives 3 bytes of padding.

Choose the same byte alignment value that you set in the Byte alignment parameter for the
corresponding Byte Pack block in the model.

Example

Suppose that you are unpacking a vector of data type uint8 or uint16, and the unpacked signals
have these attributes.

Dimension Size Type
Vector 3 int8
Vector 2 int16
Scalar 1 uint8
Scalar 1 uint32

To unpack the signals:

1 Set Output port dimensions (cell array) to:

{'3’, ‘2’, ‘1’, ‘1’}
2 Set Output port data types (cell array) to:

{'int8’, ‘int16’, ‘uint8’, ‘uint32’}

The block creates four output ports that match the order of the signal data types specified in the
cell array.

3 Set the required byte alignment value. The byte alignment value specifies the number of bytes
after which a new byte starts from the previous boundary.

The size of the output is based on the packed vector size, the byte alignment value, and the
smallest memory cell size of the processor. Depending on the byte alignment value, output values
padded with zeros are discarded before the next signal is unpacked. The smallest addressable
memory cell indicates the number of bits occupied by char or uint8 data type for a processor,
and determines the structure of packets.

4 Connect incoming signals to the input port of the Byte Unpack block.

2 Blocks

2-346

For processors with a smallest addressable memory cell of 8 bits per char, consider the packed input
vector data type uint8.

Red zeros represent padded empty memory cells.

For a packed input vector of data type uint8 and byte alignment value 2, the int8 data value (23 04
FD) occupies three memory cells, with each cell occupying 8 bits. The next input signal of int16 data
value (00DA FFF4) occupies the next four cells (fifth through eighth), and the fourth cell is empty
(padded). The Byte Unpack block considers the alignment and padding of cells while unpacking.

The packed input vector of data type uint16 is:

The unpacked output signals are:

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 23

4 04
–3 FD

Vector 2 int16 218 00DA

 Byte Unpack

2-347

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value

–12 FFF4
Scalar 1 uint8 112 70
Scalar 1 uint32 5000 00001388

For processors such as Texas Instruments C2000, with a smallest addressable memory cell of 16 bits
per char, consider a packed input vector data type uint8. The output packet occupies 16 bits
although the data value that the packet represents is 8 bits. The byte alignment values are calculated
with respect to the 16-bit addressable memory.

For a packed input vector of data type uint8 and byte alignment value 2, the int8 data value (0023
0004 00FD) occupies three memory cells, with each cell occupying 16 bits. The next signal of data
type int16 (00DA 0000 00F4 00FF) occupies the next four cells (fifth through eighth), and the fourth
cell is empty (padded). The Byte Unpack block considers the alignment and padding of cells while
unpacking.

For the packed input vector of data type uint16, the output packet occupies 16 bits, and the data
value the packet represents is also 16 bits. For a packet size of 16 and larger, the byte alignment is
calculated with respect to the number of bytes the data values have to be packed. Therefore, in this
case, 1-byte alignment is not allowed.

2 Blocks

2-348

For a packed input of data type uint16 and byte alignment value 2, the three int8 data values (0423
FD) occupy the first two memory cells. The fourth byte in the second memory cell is empty and
padded with zero. The int16 data value (00DA FFF4) occupies the next two memory cells (third and
fourth). The Byte Unpack block considers the alignment and padding of cells while unpacking.

The table lists the unpacked output signals. The int8 and uint8 data values occupy 16 bits, as
indicated by the hex value.

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 0023

4 0004
–3 FFFD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 0070
Scalar 1 uint32 5000 00001388

Version History
Introduced in R2016b

See Also
Byte Pack

 Byte Unpack

2-349

Byte Pack
Convert input signals to 8-, 16-, or 32-bit vector

Libraries:
C2000 Microcontroller Blockset / Target Communication

Description
The Byte Pack block converts one or more signals of user-selectable data types to a single uint8,
uint16, or uint32 vector output. Using the parameters of this block, you specify the input data
types and the alignment of the data in the output vector. The output of this block connects to an input
port of a send block, such as SPI Transmit, SCI Transmit, or UDP Send. The send block then
transmits signals across various communication networks, such as SPI, SCI, UDP, or I2C.

Note The Byte pack block requires the input signal dimensions to be calculated accurately so that
the block can set the output port signal dimensions appropriately. In certain modeling scenarios, you
may have to manually specify the dimensions if Simulink cannot calculate the dimensions accurately.
For example,

• When you are providing an input port directly to the Byte Pack block, you need the dimensions
accurately for the input port.

• When the input to the Byte Pack is coming through a feedback loop involving a delay block then
the dimensions will not be automatically calculated by Simulink. In this scenario, you can use
signal specification block with the correct dimension before the signal is passed as input to the
Byte Pack.

Input/Output Ports
Input

Port_1 — First of N input ports
scalar | vector | matrix

The number of input ports and their types specified as a cell array in the Input port data types (cell
array) parameter. The block can have from 1 to N input ports. N is the number of incoming data
types specified in the cell array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Vector containing packed data
vector

Transmits a vector of packed data.

2 Blocks

2-350

Data Types: uint8 | uint16 | uint32

Parameters
Output port (packed) data type — Data type of packed output signal
uint8 (default) | uint16 | uint32

The data type of the packed output signal at the output port.

Input port data types (cell array) — Data types of unpacked input signals
{'double'} (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

Data types of input signals (unpacked), specified as a cell array. The block creates input ports in the
order of the incoming data types specified in the cell array. For example, the first data type in the cell
array corresponds to the top port and the last data type corresponds to the bottom port.

For example, if the data types are single, uint8, and uint8, the block creates three input ports.
The order of the input port data types is same as the data types specified in the cell array.

Byte alignment — Alignment of input signal data types after packing
1 (default) | 2 | 4 | 8

Each element in the input signal list starts at a multiple of the byte alignment value, specified from
the start of the vector. If the byte alignment value is larger than the size of the data type in bytes, the
input values are padded with zeros to fill the space allotted.

For example, if the byte alignment value is 4, a uint32 receives no padding, a uint16 receives 2
bytes of padding, and a uint8 receives 3 bytes of padding.

Tip If the model accesses the data items frequently, consider selecting a byte alignment value equal
to the largest data type that you want to access. If the model transfers the data items frequently as a
group, consider selecting a byte alignment value of 1, which packs the data into the smallest space
possible.

Example

Suppose that you are packing four signals into a vector of data type uint8 or uint16, and the
signals have these attributes.

Dimension Size Type
Vector 3 int8
Vector 2 int16
Scalar 1 uint8
Scalar 1 uint32

To pack the signals:

1 Set Output port (packed) data type. This example compares uint8 and uint16.
2 Set Input port data types (cell array) to:

{'int8’, ‘int16’, ‘uint8’, ‘uint32’}

 Byte Pack

2-351

The block creates four input ports that match the order of the incoming signal data types
specified in the cell array.

3 Set the required byte alignment value. The byte alignment value specifies the number of bytes
after which a new byte starts from the previous boundary.

The size of the output is based on the packed vector size, the byte alignment value, and the
smallest memory cell size of the processor. Depending on the byte alignment value, input values
are padded with zeros before the next signal is packed. The smallest addressable memory cell
indicates the number of bits occupied by the char or uint8 data type for a processor and
determines the structure of packets.

4 Connect incoming signals to the input port of the Byte Pack block.

For processors with a smallest addressable memory cell of 8 bits per char, consider these values for
input signals.

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 23

4 04
–3 FD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 70
Scalar 1 uint32 5000 00001388

The packed output vector data type uint8 is:

Red zeros represent padded empty memory cells.

For a packed output vector of data type uint8 and byte alignment value 2, the int8 data value (23
04 FD) occupies the first three memory cells, with each cell occupying 8 bits. Because three is not a
multiple of the byte alignment value 2, the next input signal of int16 data value (00DA FFF4) is
allocated the next four cells (fifth through eighth), leaving the fourth cell empty. The block fills the
empty cell with zero. The rest of the input signals are packed in a similar way.

2 Blocks

2-352

After packing all input signals, the Byte Pack block calculates the total packets allocated and outputs
a uint8 vector of size 4 + 4 + 2 + 4 = 14. Here, the int8 signal occupies the first 4 cells, the int16
signal occupies the second 4 cells, the uint16 signal occupies the third 2 cells, and the uint32
signal occupies the fourth 4 cells.

The packed output vector of data type uint16 is:

For processors such as Texas Instruments C2000, with the smallest addressable memory cell of 16
bits per char, consider these values for input signals. The int8 and uint8 data values occupy 16
bits, as indicated by the hex value.

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 0023

4 0004
–3 FFFD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 0070
Scalar 1 uint32 5000 00001388

For the packed output vector of data type uint8, the output packet occupies 16 bits, although the
data value the packet represents is 8 bits. The byte alignment values are calculated with respect to
the16-bit addressable memory.

 Byte Pack

2-353

For a packed output vector of data type uint8 and byte alignment value 2, the int8 data value (0023
0004 00FD) occupies the first three memory cells, with each cell occupying 16 bits. Because three is
not a multiple of byte alignment value 2, the next signal of data type int16 (00DA 0000 00F4 00FF)
is allocated the next four cells (fifth through eighth), leaving the fourth cell empty. The block fills the
empty cell with zero. The rest of the input signals are packed in a similar way. After packing all input
signals, the Byte Pack block calculates total packets allocated and outputs a uint8 vector of size 4 +
4 + 2 + 4 = 14.

For the packed output vector of data type uint16, the output packet occupies 16 bits, and the data
value the packet represents is also 16 bits. For a packet size of 16 and larger, the byte alignment is
calculated with respect to the number of bytes the data values are packed into. Therefore, in this
case, 1-byte alignment is not allowed.

For a packed output of data type uint16 and byte alignment value 2, the three int8 data values
(0423 FD) are packed together as two words in the first two memory cells. The fourth byte in the
second memory cell is empty and filled with zero. The int16 data value (00DA FFF4) is allocated the
next two memory cells (third and fourth). The rest of the input signals are packed in a similar way.
After packing all signals, the Byte Pack block calculates total packets allocated and outputs a uint16
vector of size 2 + 2 + 1 + 2 = 7.

Version History
Introduced in R2016b

See Also
Byte Unpack

2 Blocks

2-354

Memory Allocate
Allocate memory for new variable

Libraries:
C2000 Microcontroller Blockset / Memory Operations

Description
The Memory Allocate block, on C2xxx processors, directs the TI compiler to allocate a memory
location for a new variable. Block parameters specify the variable name, the alignment of the variable
in memory, the data type of the variable, and other features that fully define the memory required.

The block does not verify whether the parameter settings for the variable are valid, such as checking
the variable name, data type, or section. You must check that the parameters settings are valid.

You do not connect the Memory Allocation block to other blocks in a model.

Parameters
Memory

Allocate memory for storing the variable. Specify the data type and size.

Variable name — Name for variable
myVariable (default) | string | character vector

Specify the name of the variable for which to allocate memory. The variable is allocated in the
generated code.

Specify variable alignment — Variable alignment flag
off (default) | on

Select this parameter, if required by your target processor, to direct the compiler to align the new
variable to a byte alignment boundary.

Parameter Dependencies

If you select this parameter, use parameter Memory alignment boundary to set the byte alignment
boundary.

Memory alignment boundary — Memory alignment for variable
4 (default) | 1 | 2 | 8

Specify the alignment boundary for the variable data type in bytes. Alignment can occur on 1-, 2-, 4-,
or 8-byte boundaries. If the variable contains multiple values, such as a vector or an array, the block
aligns elements according to rules applied by the compiler.

 Memory Allocate

2-355

Parameter Dependencies

To enable this parameter, select Specify variable alignment.

Data type — Data type for variable
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 | boolean

Specify the data type for the variable.

Specify data type qualifier — Data type qualifier flag
off (default) | on

Select this parameter to specify a data type qualifier to apply to the variable.
Parameter Dependencies

If you select this parameter, use parameter Data type qualifier to set the data type qualifier to apply
to the variable.

Data type qualifier — Data type qualifier for variable
volatile (default) | sting | character vectory

Specify the data type qualifier to apply to the variable in generated code as a string or character
vector. Common qualifiers are volatile, const, static, and register. The block does not check
whether the value that you enter is a valid qualifier.

Data dimension — Number of elements of variable data type
64 (default) | positive integer

Specify the number of elements of the specified data type for the variable as a positive integer.

Initialize memory — Memory initialization flag
off (default) | on

Select this parameter to specify an initial value for the variable.
Parameter Dependencies

If you select this parameter, use parameter Initial value to set the initial value.

Initial value — Initial value for variable
0 (default) | scalar | vector | matrix

Specify the initial value for the variable. At run time, the block sets the memory location to this value.
Parameter Dependencies

To enable this parameter, select Initialize memory.

Section

Specify the memory section in which to allocate the variable.

Specify memory section — Memory section flag
off (default) | on

Select this parameter to specify a memory section to use for allocating space in memory for the
variable.

2 Blocks

2-356

Parameter Dependencies

If you select this parameter, use parameters Memory section, Bind memory section, Section
start address to specify memory section details.

Memory section — Memory section for variable
mySEC1 (default) | string | character vector

Specify the name of the memory section to use for allocating memory for the variable as a string or
character vector. Specify a standard memory section or a custom memory section that you declare
elsewhere in your code.

Verify that the memory section has enough space to store the variable.

Parameter Dependencies

• To enable this parameter, select Specify memory section.
• To bind the specified memory section to a specific start address in memory, select Bind memory

section and specify the address by entering a value for Section start address.

Bind memory section — Bind memory section to start address flag
off (default) | on

Select this parameter to bind a newly created memory section for the variable to a specific start
address.

The new memory section specified for Memory section is defined when you select this parameter.

Parameter Dependencies

• Select this parameter to enable parameter Section start address.
• Do not select this parameter if you are associating the variable with an existing memory section.

Section start address — Start address of memory section for variable
hex2dec('8000') (default) | memory address in decimal or hexadecimal form

Specify the start address to which to bind the memory section for the variable in decimal form or in
hexadecimal form with a conversion to decimal as shown by the default value hex2dec('8000').
The block does not verify the address. Verify that the address that you specify exists and that it can
contain the specified memory section.

Parameter Dependencies

• Enable this parameter by selecting parameter Bind memory section.
• Do not specify a value for this parameter if you are associating the variable with an existing

memory section.

Version History
Introduced in R2011a

See Also
Memory Copy

 Memory Allocate

2-357

Memory Copy
Copy data from and to memory section

Libraries:
C2000 Microcontroller Blockset / Memory Operations

Description
Generated code for the Memory Copy block copies data from and to processor memory as configured
by block parameters. When you use this block to copy an individual data element from a source to a
destination, the block copies the element from the source, using the source data type, and then casts
the data element to the specified destination data type.

Include as many instances of the Memory Copy block in a model as required to manipulate memory
on a target processor. Each instance of the block works with one variable, address, or set of
addresses provided to the block as input.

Specify the source and destination for a memory copy by using block parameters. You can use block
parameters to control other aspects of a memory copy, such as:

• Initialization for memory locations
• Memory stride and offset during run time
• Write operations to memory during program initialization, during program termination, and at

every sample time
• Insertion of custom ANSI® C source code before and after each memory copy read and write

operation (for example, to lock and unlock registers before and after accessing them)

The Memory Copy block performs operations at three periods during program execution:

• Initialization
• Real-time operations
• Termination

You can use block parameters to control when and how the block initializes memory, copies data or
variables to and from memory, and terminates copy operations. The parameters enable you to turn on
and off memory copy operations in the three periods independently.

Use the Memory Copy block and the Memory Allocate block to manipulate and allocate memory for
custom device drivers, such as PCI bus drivers or codec-style drivers.

During simulation, the Memory Copy block does not perform an operation. The block output is not
defined.

2 Blocks

2-358

Ports
Input

src — Input data for copy operation
scalar | vector

The source data for the memory copy operation, specified as a scalar or vector.
Port Dependencies

To use this port as the source for the memory copy operation, set parameter Copy from to Input
port.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

&src — Address of input data for copy operation
scalar | vector

The memory address of source data for the copy operation, specified as a scalar or vector.
Port Dependencies

To use this port as the source for the memory copy operation, set parameter Copy from to
Specified address and Specify address source to Input port. The Copy Memory block
converts input port src to &src.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

src ofs — Offset for data read during copy operation
scalar | vector

Offset to use for data read during the copy operation, specified as a scalar or vector.
Port Dependencies

To create this port, select parameter Use offset when reading and set Specify offset source to
Input port.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

&dst — Address of output data for copy operation
scalar | vector

The memory address to use as the data destination for the copy operation, specified as a scalar or
vector.
Port Dependencies

To use this port as the destination for the memory copy operation, set parameter Copy to to
Specified address and Specify address source to Input port. The Copy Memory block
converts output port dst to input port &dst.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

dst ofs — Offset for data written during copy operation
scalar | vector

Offset to use for data write during the copy operation, specified as a scalar or vector.

 Memory Copy

2-359

Port Dependencies

To create this port, select parameter Use offset when writing and set Specify offset source to
Input port.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

dst — Output data for copy operation
scalar | vector

The data copied, specified as a scalar or vector.

Port Dependencies

To use this port as the destination for the memory copy operation, set parameter Copy to to Output
port.
Data Types: single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Parameters
Source

Specify the source sequential memory location for the copy operation. Specify the data type, size, and
other attributes of the source variable.

Copy from — Input source for copy operation
Input port (default) | Specified address | Specified source code symbol

Specify the input source for the data read part of the copy operation. Choose from the sources listed
in this table.

Source of Data Read Parameter Value to Specify
src input port Input port
Memory address Specified address
Symbol (variable) in source code lookup table Specified source code symbol

Parameter Dependencies

• If you select Specified address, use Specify address source to specify the source of the
memory address and Address to specify the address.

• If you select Specified source code symbol, use Source code symbol to specify the symbol
(variable) in the source code symbol table to copy.

• If you select Specified address or Specified source code symbol, change Data type to
a value other than Inherit from source (the default). If you do not make this change, you
receive an error message indicating that the data type cannot be inherited because the input port
does not exist.

Specify address source — Source of memory address for input data
Specify via dialog (default) | Input port

2 Blocks

2-360

Specify the source of the memory address of the input source for the copy operation. To specify a
memory address for the source variable, select Specify via dialog. That selection enables an
Address parameter that you use to specify the memory address.

To specify that the block get the address from the input port, select Input port. When you select
Input port, the block input port label changes to &src.

Parameter Dependencies

• To enable this parameter, set Copy from to Specified address.
• If you select Specify via dialog, this parameter enables the Address parameter, which you

use to specify the address of the source variable.
• If you select Specify via dialog, set Data type to a value other than Inherit from source

(the default). If you do not make this change, you receive an error message indicating that the
data type cannot be inherited because the input port does not exist.

• If you select Inport port , specify a data type for the Data type parameter.

Address — Memory address of source data
hex2dec('00001000') (default) | memory address in decimal or hexadecimal form with a conversion to
decimal

Specify the memory address of the source data in decimal form or in hexadecimal form with a
conversion to decimal as shown by the default value hex2dec('00001000').

This example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you can specify the address as 4096 or hex2dec('1000').

Parameter Dependencies

To enable this parameter, set Copy from to Specified address and Specify address source to
Specify via dialog.

Source code symbol — Symbol in source code symbol table
myVariableSrc (default) | string | character vector

Specify the symbol (variable) in the source code symbol table to copy. The symbol that you specify
must exist in the symbol table for your program. The block does not verify whether the symbol exists
in the symbol table and whether you specify the symbol with valid syntax. Enter text that specifies the
symbol exactly as it appears in your code.

Parameter Dependencies

• To enable this parameter, set Copy from to Specified source code symbol.
• Set Data type to a value other than Inherit from source (the default). If you do not make this

change, you receive an error message indicating that the data type cannot be inherited because
the input port does not exist.

Data type — Data type of data being copied
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | Inherit
from input port

 Memory Copy

2-361

Specify the data type of the source data being copied. To inherit the data type from the src input
port, select Inherit from input port.

Data length — Number of data elements to copy
1 (default) | positive integer

Specify the number of elements to copy from the source location. Each element has the data type
specified by the Data type parameter.

Use offset when reading — Use offset when reading input
off (default) | on

Specify whether the block uses an offset when reading input. The offset value is in elements of the
specified data type. Specify the source of the offset by using the Specify offset source parameter.

Parameter Dependencies

• If you select this parameter, use Specify offset source to specify the source of the offset.
• Use Offset to specify the offset value.

Specify offset source — Source of input offset
Specify via dialog (default) | Input port

Specify the source of the input offset for the copy operation. To specify an offset value, select
Specify via dialog. That selection enables an Offset parameter that you use to specify the offset
value.

To specify for the block to get the offset from an input port, select Input port. When you select
Input port, the block creates an input port labeled src ofs and reads the offset value from that
port. The src ofs port enables your program to change the offset dynamically during program
execution.

Parameter Dependencies

To enable this parameter, select Use offset when reading.

Offset — Number of values to skip before copying first value to destination
0 (default) | positive integer

Before copying the first value to the destination, specify the number of values to skip.

Parameter Dependencies

To enable this parameter, select Use offset when reading and set Specify offset source to
Specify via dialog.

Stride — Spacing for reading input
1 (default) | positive integer

Specify the spacing for reading the input. By default, the stride value is one, meaning that the
generated code reads the input data sequentially. When you add a stride value that is not equal to
one, when reading input data, the generated code skips spaces in the source address equal to the
stride.

These figures show the stride concept. In the first figure, data is copied without a stride. The second
figure shows the results of a stride value of two. You can specify a stride value for the block output

2 Blocks

2-362

with parameter Stride on the Destination tab. You can also compare stride with the offset to see the
differences.

 Memory Copy

2-363

Destination

Specify the destination memory location for the copy operation. Specify the attributes of the
destination.

Copy to — Type of output destination for copy operation
Output port (default) | Specified address | Specified destination code symbol

Specify the type of output destination for the copy operation. Select one of the values listed in this
table.

Parameter Value Destination of Data Write
Output port Block dst output port
Specified address Memory location specified by parameters Specify

address destination and Address
Specified source code symbol Symbol (variable) specified by parameter Source

code symbol

Parameter Dependencies

• If you select Specified address, use Specify address destination to specify the destination
memory location.

• If you select Specified source code symbol, use Destination code symbol to specify the
symbol (variable) in the source code symbol table to which to copy the variable.

Specify address source — Source of memory address for output destination
Specify via dialog (default) | Input port |

Specify the source of the destination memory address of the variable for the copy operation. To
specify a memory address for the variable, select Specify via dialog. That selection enables an
Address parameter that you use to specify the memory address. To specify that the block get the
address from an input port, select Input port. When you select Input port, the block creates an
input port labeled &dst. Changing the address dynamically means that you can use the block to copy
different variables by providing the variable address from an upstream block in the model.

Parameter Dependencies

• To enable this parameter, set Copy to to Specified address.
• If you select Specify via dialog, this parameter enables the Address parameter, which you

use to specify the address of the destination variable.

Address — Memory address of destination variable
hex2dec('00002000') (default) | memory address in decimal or hexadecimal form with a conversion to
decimal

Specify the memory address of the destination variable in decimal form or in hexadecimal form with a
conversion to decimal as shown by the default value hex2dec('00001000').

This example converts Ox2000 to decimal form.

8192 = hex2dec('2000');

For this example, you can specify the address as 8192 or hex2dec('2000').

2 Blocks

2-364

Parameter Dependencies

To enable this parameter, set Copy to to Specified addressand Specify address source to
Specify via dialog.

Source code symbol — Symbol in source code symbol table
myVariableDst (default) | string | character vector

Specify the symbol (variable) in the source code symbol table to which to copy the variable. The
symbol that you specify, must exist in the symbol table for your program. The block does not verify
whether the symbol exists in the symbol table and whether you specify the symbol with valid syntax.
Enter text that specifies the symbol exactly as it appears in your code.

Parameter Dependencies

To enable this parameter, set Copy to to Specified source code symbol.

Data type — Data type of variable
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | uint32 | int64 | uint64 | boolean |
Inherit from source

Specify the data type of the source variable. To inherit the data type from the source variable, select
Inherit from source.

Use offset when writing — Use offset when writing output
off (default) | on

Specify whether the block uses an offset when writing output. The offset value is in elements of the
specified data type. Specify the source of the offset by using the Specify offset source parameter.

Parameter Dependencies

If you select this parameter, use Specify offset source to specify the source of the offset. Use Offset
to specify the offset value.

Specify offset source — Source of offset for output destination
Specify constant value (default) | Specify source code symbol

Specify the source of the offset for the output destination for the copy operation. To specify an offset
value for the destination variable, select Specify via dialog. That selection enables an Offset
parameter that you use to specify the offset value.

To specify that the block get the offset from the input port, select Input port. When you select
Input port, the block adds an input port labeled dst ofs and reads the offset value from that port.
The dst ofs port enables your program to change the offset dynamically during execution.

Parameter Dependencies

To enable this parameter, select Specify offset source.

Offset — Number of values to skip before writing first value to destination
0 (default) | positive integer

Before writing the first value to the destination, specify the number of values to skip.

 Memory Copy

2-365

Parameter Dependencies

To enable this parameter, select Use offset when writing and set Specify offset source to
Specify via dialog.

Stride — Spacing for writing output
1 (default) | positive integer

Specify the spacing for writing the output. By default, the stride value is one meaning that the
generated code writes the input data sequentially to the destination in consecutive locations. When
you add a stride value that is not equal to one, when writing input data, the generated code skips
spaces in the destination address equal to the stride.

This figure shows a stride value of three applied to writing the input to an output location. You can
specify a stride value for the input with parameter Stride on the Source pane. As shown in the
figure, you can use an input stride and an output stride at the same time to enable manipulating
memory more fully.

Sample time — Rate of memory copy
inf (default) | scalar

Specify the rate at which the memory copy operation occurs in seconds. To use a constant sample
time, specify Inf. To inherit the sample time from the input port or, when the block does not have an
input port, from the Simulink model, specify -1.

2 Blocks

2-366

Options

Configure parameters that control the copy process.

Set memory value at initialization — Set memory address during initialization
off (default) | on

Specify whether to initialize the memory address to a specific value during program initialization.

Parameter Dependencies

If you select this parameter, use a combination of parameters to configure the initialization value.

What to Configure Parameter
Source of the initialization value Specify initialization value source
Initialization value as a constant Initialization value (constant)
Initialization value as a variable Initialization value (source code symbol)
Initialization value as a mask to manipulate
register contents at the bit level

Apply initialization value as mask

Apply a mask value Bitwise operator

Specify initialization value source — Source of initialization value
Specify constant value (default) | Specify source code symbol

Specify the source of the initial value. To configure the source for initializing memory as a specific
value, select Specify constant value. To configure the source as a variable (a symbol), select
Specify source code symbol.

Parameter Dependencies

• To enable this parameter, select Set memory value at initialization.
• Use Initialization value (constant) or Initialization value (source code symbol) to specify

the initial value.

Initialization value (constant) — Constant initialization value
1 (default) | scalar

Specify a constant value.

Parameter Dependencies

To enable this parameter, select Set memory value at initialization and set Set initialization
value source to Specify constant value.

Initialization value (source code symbol) — Symbol in source code symbol table
myInitValueVariable (default) | string | character vector

Specify the symbol (variable) in the source code symbol table to use for the initialization value. The
symbol that you specify must exist in the symbol table for your program. The block does not verify
whether the symbol exists in the symbol table and whether you specify the symbol with valid syntax.
Enter text that specifies the symbol exactly as it appears in your code.

 Memory Copy

2-367

Parameter Dependencies

To enable this parameter, select Set memory value at initialization and set Set initialization
value source to Specify source code symbol.

Apply initialization value as mask — Apply initialization value as mask
off (default) | on

Specify whether to use the initialization value as a mask to manipulate register content at the bit
level. Your initialization value is treated as a string of bits for the mask.

To define how to apply the mask value, specify a value for the Bitwise operator parameter.

To use your initialization value as a mask, the output from the copy must be a specific address. The
output:

• Can be a symbol
• Cannot be an output port

Parameter Dependencies

If you select this parameter, use Bitwise operator to define how to apply the mask value.

Bitwise operator — Type of bitwise operation
bitwise AND (default) | bitwise OR | bitwise exclusive OR | left shift | right shift

Specify the type of bitwise operation to use as a mask to manipulate the memory value. Applying a
mask to the copy process means that you can select individual bits in the result. For example, by
applying a mask, you can read the value of the fifth bit.

Select one of the bitwise operations in this table.

Bitwise Operation Description
bitwise AND Apply the mask value as a bitwise AND to the value in the register.
bitwise OR Apply the mask value as a bitwise OR to the value in the register.
bitwise exclusive OR Apply the mask value as a bitwise exclusive OR to the value in the

register.
left shift Shift the bits in the register left by the number of bits represented by

the initialization value. For example, if your initialization value is 3,
the block shifts the register value to the left 3 bits. In this case, the
value must be a positive integer.

right shift Shift the bits in the register to the right by the number of bits
represented by the initialization value. For example, if your
initialization value is 6, the block shifts the register value to the right
6 bits. In this case, the value must be a positive integer.

Parameter Dependencies

To enable this parameter, select Apply initialization value as mask.

Set memory value at termination — Copy memory during program termination
off (default) | on

2 Blocks

2-368

Specify that your program copy memory during program termination. Copying a value in memory
during termination occurs in addition to a copy during program initialization.

Parameter Dependencies

If you select this parameter, you can use Set memory value only at initialization/termination to
limit copy operations to occur during program initialization and termination only.

Termination value — Termination value
1 (default) | scalar | vector | matrix

Specify a value to write to memory during program termination.

Parameter Dependencies

To enable this parameter, select Set memory value at termination.

Set memory value only at initialization/termination — Copy memory value during program
initialization and termination only
off (default) | on

Specify whether to perform copies during program initialization and termination only. When this
parameter is cleared, the block performs copies during initialization, real-time operations, and
termination. If you select this parameter, the block performs copies during initialization and
termination only.

Insert custom code before memory write — Insert custom code before memory write
off (default) | on

Specify whether the code generator inserts custom ANSI C code immediately before the program
writes to the specified memory location. You can use this parameter and Insert custom code after
memory write to lock and unlock registers before and after accessing them. For example, some
processors have registers that you might need to unlock and lock with EALLOW and EDIS macros
before and after your program accesses them.

Parameter Dependencies

If you select this parameter, use Custom code to specify the custom ANSI C code to insert into the
generated code immediately before the memory write operation.

Insert custom code after memory write — Custom code after memory write flag
off (default) | on

Specify whether the code generator inserts custom ANSI C code immediately after the program
writes to the specified memory location. You can the Insert custom code before memory write and
this parameter to lock and unlock registers before and after accessing them. For example, some
processors have registers that you might need to unlock and lock with EALLOW and EDIS macros
before and after your program accesses them.

Parameter Dependencies

If you select this parameter, use Custom code to specify the custom ANSI C code to insert into the
generated code immediately after the memory write operation.

Custom code —
/* Custom Code Before Write*/ or /* Custom Code After Write*/ (default) | string | character vector

 Memory Copy

2-369

Specify custom ANSI C code to insert into the generated code immediately before or immediately
after the memory write operation. Code that you specify appears in the generated code exactly as you
enter it.

Parameter Dependencies

To enable this parameter, select Insert custom code before memory write or Insert custom code
after memory write.

Version History
Introduced in R2011a

See Also
Memory Allocate

2 Blocks

2-370

Idle Task
Create free-running task

<softwaremeta type="block" version="5.0-variant tmwbook5.0" xml:base="../../../shareddoc/
prod_softwaremeta/c2b/block_idletask_softwaremeta.xml">
<librarypath> C2000 Microcontroller Blockset / Scheduling </librarypath>
<extendedcapabilities></extendedcapabilities>
</softwaremeta>

Description

The Idle Task block, and the subsystem connected to it, specify one or more functions to execute as
background tasks. The tasks executed through the Idle Task block are of the lowest priority, lower
than that of the base rate task.

This block is not supported on targets running an operating system or RTOS.

Vectorized Output

The block output comprises a set of vectors—the task numbers vector and the preemption flag or
flags vector. A preemption-flag vector must be the same length as the number of tasks vector unless
the preemption flag vector has only one element. The value of the preemption flag determines
whether a given interrupt (and task) is preemptable. Preemption overrides prioritization. A lower-
priority nonpreemptable task can preempt a higher-priority preemptable task.

When the preemption flag vector has one element, that element value applies to the functions in the
downstream subsystem as defined by the task numbers in the task number vector. If the preemption
flag vector has the same number of elements as the task number vector, each task defined in the task
number vector has a preemption status defined by the value of the corresponding element in the
preemption flag vector.

Parameters
Task numbers

Identifies the created tasks by number. Enter as many tasks as you need by entering a vector of
integers. The default values are [1,2] to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the functions in the downstream
subsystem, while the number of values you enter corresponds to the number of functions in the
downstream subsystem.

 Idle Task

2-371

Enter a vector containing the same number of elements as the number of functions in the
downstream subsystem. This vector can contain up to 16 elements, and the values must be from 0
to 15 inclusive.

The value of the first element in the vector determines the order in which the first function in the
subsystem is executed, the value of the second element determines the order in which the second
function in the subsystem is executed, and so on.

For example, entering [2,3,1] in this field indicates that there are three functions to be executed,
and that the third function is executed first, the first function is executed second, and the second
function is executed third. After the functions are executed, the Idle Task block cycles back and
repeats the execution of the functions in the same order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower priority. To allow you to control
preemption, use the preemption flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0 indicates the interrupt
cannot be preempted. When Task numbers contains more than one task, you can assign
different preemption flags to each task by entering a vector of flag values, corresponding to the
order of the tasks in Task numbers. If Task numbers contains more than one task, and you
enter only one flag value here, that status applies to the tasks.

In the default settings [0 1], the task with priority 1 in Task numbers is not preemptable, and
the priority 2 task can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port to the Idle Task block. This port
is used in simulation only. Connect one or more simulated interrupt sources to the simulation
input.

Note Select this check box to test asynchronous interrupt processing behavior in Simulink software.

2 Blocks

2-372

CLA Task Manager
Create and manage task executions in Control Law Accelerator (CLA) model

Libraries:
C2000 Microcontroller Blockset / Scheduling

Description
The CLA Task Manager block simulates the execution of software tasks as they would be expected to
behave on a CLA processor. Using this block, you can add and remove event-driven tasks from your
model. Tasks can be represented as function-call subsystems contained inside a single Model block.
The CLA Task Manager block executes individual tasks based on their parameters. Task parameters
include duration, trigger, and priority

Note The CLA Task Manager block cannot be used in a referenced model. For more information on
referenced models, see the Model block.

The CLA Task Manager block provides three methods to specify the duration of a task in simulation:

• A probability model of task duration defined in the block mask.
• A data file recording of either a previous task simulation or from a task on an SoC device.
• Input ports, which you can connect to more dynamic models of task duration.

Limitations
• A model containing a CLA Task Manager blocks does not support simulation stepping. For more

information on simulation stepping, see “Debug Simulations in the Simulink Editor”.

Ports
Output

Task1 — Function-call from Task1
scalar

A function-call signal that can trigger event-driven tasks. The CLA Model block represents these tasks
as function-call subsystems.

To show the function-call port from an event-driven subsystem contained in a Function-Call
Subsystem block on the Model block, include an Inport in the processor Model block connected to the
function-call trigger port of the subsystem. In the Inport, select Block Parameters > Signal
Attributes > Output function call.

Note The Task1 port must be connected to a function-call port on a Model block.

 CLA Task Manager

2-373

Dependencies

To create or remove a control signal port for a task, add or remove the task from the CLA Task
Manager block by clicking the Add or Delete buttons in the block dialog mask.

Input

Task1Event — Message event notification
scalar

A message port that triggers the associated event-driven task. The Task1Event port receives the
message from a Software Trigger CPU<->CLA, PWM Interface, or ADC Interface block. For more
information on messages, see “Messages”.
Dependencies

To show a Task1Event port, set the Type parameter of Task1 to Event-driven.
Data Types: rteEvent

Task1Dur — Task duration
positive scalar

A positive-value signal that specifies the execution duration of a task at the present time. For more
information on specifying task duration, see “Task Duration” (SoC Blockset).
Dependencies

To enable this port, set the Specify task duration via parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Enable task simulation — Option to enable simulation of task duration
on (default) | off

Enable or disable the simulation of task duration. If you clear this parameter, tasks simulate using a
function-call generator. Event-driven tasks inherit their period from the fundamental sampling time of
the model. Timer-driven tasks inherit their period from the block dialog mask.

List of tasks — List of tasks
Task1 (default)

List of the tasks generated by the CLA Task Manager block. Each task has a set of parameters listed
in the Main and Simulation tabs of the block dialog mask.

Add — Option to add task
button

Add a task to the CLA Task Manager block. During deployment, the generated code encapsulates
each task as an interrupt. The Main parameters for each task define the properties of its interrupt.
During simulation, the task uses a combination of the Main and Simulation parameters for that
task.

Delete — Option to delete existing task
button

2 Blocks

2-374

Remove a task from the Task Manager.

Dependencies

To enable this parameter, specify at least two tasks.

Main

Name — Name of task
Task1 (default) | character vector

Unique name of the task. The task name must contain only alphanumeric characters and underscores.

Priority — Priority of task in scheduler
10 (default) | integer in the range [1, 99]

Specify the scheduler's priority for the event-driven task as an integer in the range [1, 99]. Higher-
priority tasks can preempt lower-priority tasks. The hardware attributes limit the task priority range.
For more information on task priority, see “Task Priority and Preemption” (SoC Blockset).

Dependencies

To enable this parameter, set Type to Event-driven.

Simulation

Specify task duration via — Source of task execution time
Dialog (default) | Input port | Record task execution statistics

Specify the source of timing information for task execution as one of these options.

• Dialog — Use a normally-distributed probabilistic model with Mean, Deviation, Min, and Max
defined in the block dialog mask.

• Input port — The block input port dynamically defines the execution duration.
• Record task execution statistics — Use a normally-distributed probabilistic model with

mean and deviation defined in the file specified by File name.

For more information on configuring task duration, see “Task Duration” (SoC Blockset).

Task duration settings

Add — Option to add distribution
button

Adds a distribution to the set of normal distributions that generates an execution duration. For more
information on configuring task duration, see “Task Duration” (SoC Blockset).

Note Only a maximum five distributions can be assigned to a single task.

Delete — Option to remove distribution
button

Remove a distribution from the set of normal distributions.

 CLA Task Manager

2-375

Percent — Likelihood of distribution
100 (default) | positive scalar

Specify the likelihood of each normal distribution. The Percent weighted sum of normal distributions
determines the task duration likelihood. For more information on configuring task duration, see “Task
Duration” (SoC Blockset).

Note The sum of Percent for all the distributions in a single task must equal 100.

Mean — Mean task duration in simulation
1e-06 (default) | positive scalar

Specify the mean task duration during simulation of the task. The simulated task duration uses a
normal distribution with specified Mean and SD parameter values as a first-order approximation of
the task behavior. For more information on configuring task duration, see “Task Duration” (SoC
Blockset).

SD — Standard deviation of task duration in simulation
0 (default) | positive scalar

Specify the standard deviation task duration during simulation of the task. The simulated task
duration uses a normal distribution with specified Mean and SD as a first-order approximation of the
task behavior. For more information on configuring task duration, see “Task Duration” (SoC Blockset).

Min — Lower limit of task duration
1e-06 (default) | positive scalar

Lower limit of a task duration distribution. For more information on configuring task duration, see
“Task Duration” (SoC Blockset).

Max — Upper limit of task duration
1e-06 (default) | positive scalar

Upper limit of a task duration distribution. For more information on configuring task duration, see
“Task Duration” (SoC Blockset).

Version History
Introduced in R2022a

See Also
Task Manager | SW Trigger CPU<->CLA

2 Blocks

2-376

Software Trigger CPU<->CLA
Trigger software events between processor (CPU) and control law accelerator (CLA)

Libraries:
C2000 Microcontroller Blockset / Scheduling

Description
The Software Trigger CPU<->CLA block simulates the triggering of software events between
processor (CPU) and CLA in a supported Texas Instruments hardware board. When you use this block
as a task on a CPU, the block generates an event to execute tasks on the connected CLA unit. When
you use this block as a task on the CLA, the block generates an event to execute tasks on the
connected CPU. Use this block to manage the communication and synchronization between the CPU
and CLA.

Ports
Input

data — Event trigger signal
scalar

Specify an event signal to start the software interrupt in the CPU or CLA.
Data Types: Boolean

Output

event — Task event signal
scalar

This port sends a message at whenever the trigger condition occurs. Specify the trigger condition in
the Trigger condition parameter. This output connects to the input of the Task Manager block to
execute the associated event-driven task.

Note The Outport block, at the top-level of the reference model that contains the Software Trigger
CPU<->CLA block, that connects to this event port must be configured as a non-virtual bus.

Data Types: rteEvent

Parameters
Task number — Task identification number
1 (default) | integer from 1 to 8

Specify the number of the CLA task to trigger.

 Software Trigger CPU<->CLA

2-377

Trigger condition — Condition to trigger an event
Rising edge (default) | Input high

Generate an event on the event port either on a rising edge of the data port or whenever the input is
high. To generate an event when the input signal changes from zero to one, set this parameter to
Rising edge. To generate an event once per execution of the task, set this parameter to Input
high.

Trigger type — Trigger type
Trig (default) | TrigAndWait(codegen)

Specify the trigger type of on the CPU. To generate an event and continue running the CPU, set this
parameter to Trig. To generate an event and instruct the CPU to wait for the interrupt to complete,
set this parameter to TrigAndWait(codegen). The TrigAndWait(codegen) option does not run
in simulation.

Dependencies

To enable this parameter, the block must be inside a reference model with the Processing Unit set
to one of the CPUs.

Version History
Introduced in R2022a

See Also
Task Manager | CLA Task Manager | PWM Interface | “Modeling Control Law Accelerator (CLA)
Using Model Reference”

Topics
“Control Law Accelerator in DC-DC Power Conversion” (SoC Blockset)

2 Blocks

2-378

CAN FD Pack
Pack individual signals into message for CAN FD bus

Libraries:
Vehicle Network Toolbox / CAN FD Communication
Embedded Coder Support Package for Texas Instruments C2000
Processors / Target Communication
Simulink Real-Time / CAN / CAN-FD MSG blocks

Description
The CAN FD Pack block loads signal data into a message at specified intervals during the simulation.

To use this block, you also need a license for Simulink software.

The CAN FD Pack block supports:

• The use of Simulink Accelerator™ mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Design Your Model for Effective Acceleration”.

Tip

• To work with J1939 messages, use the blocks in the J1939 Communication block library instead of
this block.

Ports
Input

Data — CAN FD message signal input
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN FD Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals that you specify for the block. For example, if your message has
four signals, the block can have four input ports.

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Msg — CAN FD message output
CAN_FD_MESSAGE_BUS

This block has one output port, Msg. The CAN FD Pack block takes the specified input signals and
packs them into a CAN FD message, output as a Simulink CAN_FD_MESSAGE_BUS signal. For more
information on Simulink bus objects, see “Composite Interfaces”.

 CAN FD Pack

2-379

Parameters
Data input as — Select your data signal
raw data (default) | manually specified signals | CANdb specified signals

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one input
port on your block.

The conversion formula is:

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal and raw_value is the packed signal
value.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block inputs
depends on the number of signals specified in the CANdb file for the selected message.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input through a CANdb file in the Data is
input as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message. File names that contain non-alphanumeric characters such as
equal signs, ampersands, and so on are not valid CAN database file names. You can use periods in
your database name. Before you use the CAN database files, rename them with non-alphanumeric
characters.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — CAN message list
array of character vectors

This option is available if you specify that your data is input through a CANdb file in the Data is
input as field and you select a CANdb file in the CANdb file field. Select the message to display
signal details in the Signals table.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

2 Blocks

2-380

Name — CAN FD message name
CAN Msg (default) | character vector

Specify a name for your CAN FD message. The default is CAN Msg. This option is available if you
choose to input raw data or manually specify signals. This option is not available if you choose to use
signals from a CANdb file.
Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Protocol mode — CAN FD message protocol
CAN FD (default) | CAN

Specify the message protocol mode.
Programmatic Use
Block Parameter: ProtocolMode
Type: string | character vector
Values: 'CAN FD' | 'CAN'
Default: 'CAN FD'

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to input raw data or manually specify signals. For CANdb
specified signals, the Identifier type inherits the type from the database.
Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

Identifier — Message identifier
0 (default) | 0 .. 536870911

Specify your message ID. This number must be a positive integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. You can also specify hexadecimal
values by using the hex2dec function. This option is available if you choose to input raw data or
manually specify signals.
Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN FD message length
8 (default) | 0 to 64

Specify the length of your message. For CAN messages the value can be 0 to 8 bytes; for CAN FD the
value can be 0 to 8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified signals
for your data input, the CANdb file defines the length of your message. This option is available if you
choose to input raw data or manually specify signals.

 CAN FD Pack

2-381

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8', '12', '16', '20', '24', '32', '48', '64'
Default: '8'

Remote frame — CAN message as remote frame
off (default) | on

(Disabled for CAN FD protocol mode.) Specify the CAN message as a remote frame.

Programmatic Use
Block Parameter: Remote
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Bit Rate Switch (BRS) — Enable bit rate switch
off (default) | on

(Disabled for CAN protocol mode.) Enable bit rate switch.

Programmatic Use
Block Parameter: BRSSwitch
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Add signal — Add CAN FD signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN FD signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

This table appears if you choose to specify signals manually or define signals by using a CANdb file.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals in this table. Each signal that you
create has these values:

2 Blocks

2-382

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel®). In this format you count bits from
the least significant bit, to the most significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Pack

2-383

Little-Endian Byte Order Counted from the Least-Significant Bit to the Highest

2 Blocks

2-384

Address
• BE: Where byte order is in big-endian format (Motorola®). In this format you count bits from

the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
big-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Pack

2-385

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

2 Blocks

2-386

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block packs the signals into the message at each time step:

• Standard: The signal is packed at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block packs Signal-B along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block packs Signal-C along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See the Data input as parameter conversion formula to understand how
physical values are converted to raw values packed into a message.

 CAN FD Pack

2-387

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See the Data input as parameter conversion formula to understand how
physical values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks

Topics
“Design Your Model for Effective Acceleration”
“Composite Interfaces”

2 Blocks

2-388

CAN FD Unpack
Unpack individual signals from CAN FD messages

Libraries:
Vehicle Network Toolbox / CAN FD Communication
Embedded Coder Support Package for Texas Instruments C2000
Processors / Target Communication
Simulink Real-Time / CAN / CAN-FD MSG blocks

Description
The CAN FD Unpack block unpacks a CAN FD message into signal data by using the specified output
parameters at every time step. Data is output as individual signals.

To use this block, you also need a license for Simulink software.

The CAN FD Unpack block supports:

• Simulink Accelerator mode. You can speed up the execution of Simulink models. For more
information, see “Design Your Model for Effective Acceleration”.

Tip

• To process every message coming through a channel, it is recommended that you use the CAN FD
Unpack block in a function trigger subsystem. See “Using Triggered Subsystems”.

• To work with J1939 messages, use the blocks in the J1939 Communication block library instead of
this block.

Ports
Input

Msg — CAN FD message input
CAN_FD_MESSAGE_BUS

This block has one input port, Msg. The CAN FD Unpack block takes the specified input CAN
messages and unpacks their signal data to separate outputs.

The block supports the following input signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Data — CAN message output
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

 CAN FD Unpack

2-389

The CAN FD Unpack block has one output port by default. The number of data output ports is
dynamic and depends on the number of signals you specify for the block to output. For example, if
your block has four signals, it has four output ports, labeled by signal name.

For manually or CANdb specified signals, the default output signal data type is double. To specify
other types, use a Signal Specification block. This allows the block to support the following output
signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and boolean.
The block does not support fixed-point types.

Additional output ports can be added by the options in the parameters Output ports pane.

Parameters
Data to output as — Select your data signal
raw data (default) | manually specify signals | CANdb specified signals

• raw data: Output data as a uint8 vector array. If you select this option, you specify only the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

The conversion formula is:

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.
• manually specified signals: You can specify data signals. If you select this option, use the

Signals table to create your signals message manually. The number of output ports on your block
depends on the number of signals that you specify. For example, if you specify four signals, your
block has four output ports.

• CANdb specified signals: You can specify a CAN database file that contains data signals. If
you select this option, select a CANdb file. The number of output ports on your block depends on
the number of signals specified in the CANdb file. For example, if the selected message in the
CANdb file has four signals, your block has four output ports.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The signals
specified in the CANdb file populate the Signals table. File names that contain non-alphanumeric
characters such as equal signs, ampersands, and so forth, are not valid CAN database file names. You
can use periods in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Programmatic Use
Block Parameter: CANdbFile

2 Blocks

2-390

Type: string | character vector

Message list — Message list
array of character vectors

This option is available if you specify in the Data to be output as list that your data is to be output
as a CANdb file and you select a CANdb file in the CANdb file field. You can select the message that
you want to view. The Signals table then displays the details of the selected message.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — Message name
CAN Msg (default) | character vector

Specify a name for your message. The default is Msg. This option is available if you choose to output
raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — Identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to output raw data or manually specify signals. For CANdb-
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

Identifier — Message identifier
0 (default) | 0 .. 536870911

Specify your message ID. This number must be an integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify –1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output raw
data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 .. 8

Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD the
value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified signals

 CAN FD Unpack

2-391

for your output data, the CANdb file defines the length of your message. This option is available if you
choose to output raw data or manually specify signals.
Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8', '12', '16', '20', '24', '32', '48', '64'
Default: '8'

Add signal — Add CAN signal

Add a signal to the signal table.
Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.
Programmatic Use

None

Signals — Signals table
table

If you choose to specify signals manually or define signals by using a CANdb file, this table appears.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal that you create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least-significant bit to the most-significant bit and proceeding to the next higher byte as

2 Blocks

2-392

you cross a byte boundary. For example, if you pack one byte of data in little-endian format,
with the start bit at 20, the data bit table resembles this figure.

 CAN FD Unpack

2-393

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

2 Blocks

2-394

Address
• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from

the least-significant bit to the most-significant bit and proceeding to the next lower byte as you
cross a byte boundary. For example, if you pack one byte of data in big-endian format, with the
start bit at 20, the data bit table resembles this figure.

 CAN FD Unpack

2-395

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

2 Blocks

2-396

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block unpacks the signals from the message at each time step:

• Standard: The signal is unpacked at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block unpacks Signal-B along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block unpacks Signal-C along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). For more information, see the Data input as parameter conversion formula.

 CAN FD Unpack

2-397

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. For more information, see the Data input as parameter conversion formula.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Output identifier — Add CAN ID output port
off (default) | on

Select this option to output a CAN message identifier. The data type of this port is uint32.
Programmatic Use
Block Parameter: IDPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output timestamp — Add Timestamp output port
off (default) | on

Select this option to output the message timestamp. This value indicates when the message was
received, measured as the number of seconds elapsed since the model simulation began. This option
adds a new output port to the block. The data type of this port is double.
Programmatic Use
Block Parameter: TimestampPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output error — Add Error output port
off (default) | on

Select this option to output the message error status. This option adds a new output port to the block.
An output value of 1 on this port indicates that the incoming message is an error frame. If the output
value is 0, there is no error. The data type of this port is uint8.
Programmatic Use
Block Parameter: ErrorPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output remote — Add Remote output port
off (default) | on

Select this option to output the message remote frame status. This option adds a new output port to
the block. The data type of this port is uint8.

2 Blocks

2-398

Programmatic Use
Block Parameter: RemotePort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output length — Add Length output port
off (default) | on

Select this option to output the length of the message in bytes. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: LengthPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output status — Add Status output port
off (default) | on

Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of this
port is uint8.

Programmatic Use
Block Parameter: StatusPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Bit Rate Switch (BRS) — Add BRS output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message bit rate switch. This option adds
a new output port to the block, which indicates if the CAN FD message bit rate switch is set. The data
type of this port is boolean, indicating whether the bit rate for the data phase of the message is
faster (true) or the same (false) as the bit rate of the arbitration phase.

For more information on BRS, see CAN FD - Some Protocol Details.

Programmatic Use
Block Parameter: BRSPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Error Status Indicator (ESI) — Add ESI output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message error status. This option adds a
new output port to the block. The data type of this port is boolean, indicating if the CAN FD
message error state indicator flag is set.

For more information on ESI, see CAN FD - Some Protocol Details.

 CAN FD Unpack

2-399

https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/can/can-fd/

Programmatic Use
Block Parameter: ESIPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Data Length Code (DLC) — Add DLC output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message data length. This option adds a
new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: DLCPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks

Topics
“Design Your Model for Effective Acceleration”
“Composite Interfaces”

2 Blocks

2-400

CAN Pack
Pack individual signals into CAN message

Libraries:
Vehicle Network Toolbox / CAN Communication
Embedded Coder / Embedded Targets / Host Communication
Embedded Coder Support Package for Texas Instruments C2000
Processors / Target Communication
Simulink Real-Time / CAN / CAN MSG blocks

Description
The CAN Pack block loads signal data into a CAN message at specified intervals during the
simulation.

To use this block, you must have a license for Simulink software.

The CAN Pack block supports:

• Simulink Accelerator rapid accelerator mode. You can speed up the execution of Simulink models.
• Model referencing. Your model can include other Simulink models as modular components.

For more information, see “Design Your Model for Effective Acceleration”.

Tip

• This block can be used to encode the signals of J1939 parameter groups up to 8 bytes. However, to
work with J1939 messages, it is preferable to use the blocks in the J1939 Communication block
library instead of this block.

Ports
Input

Data — CAN message signal input
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals you specify for the block. For example, if your message has four
signals, the block can have four input ports.

The block supports the following input signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

Code generation to deploy models to targets. If your signal information consists of signed or unsigned
integers greater than 32 bits long, code generation is not supported.

 CAN Pack

2-401

Output

CAN Msg — CAN message output
CAN_MESSAGE | CAN_MESSAGE_BUS

This block has one output port, CAN Msg. The CAN Pack block takes the specified input signals and
packs them into a CAN message. The output data type is determined by the Output as bus
parameter setting.

Parameters
Data input as — Select your data signal
raw data (default) | manually specified signals | CANdb specified signals

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one input
port on your block.

The conversion formula is:

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal and raw_value is the packed signal
value.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block inputs
depends on the number of signals specified in the CANdb file for the selected message.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input through a CANdb file in the Data is
input as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

File names that contain non-alphanumeric characters such as equal signs, ampersands, and so on are
not valid CAN database file names. You can use periods in your database name. Before you use the
CAN database files, rename them with non-alphanumeric characters.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

2 Blocks

2-402

Message list — CAN message list
array of character vectors

This option is available if you specify that your data is input through a CANdb file in the Data is
input as field and you select a CANdb file in the CANdb file field. Select the message to display
signal details in the Signals table.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN message name
CAN Msg (default) | character vector

Specify a name for your CAN message. The default is CAN Msg. This option is available if you choose
to input raw data or manually specify signals. This option is not available if you choose to use signals
from a CANdb file.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to input raw data or manually specify signals. For CANdb
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

CAN Identifier — CAN message ID
0 (default) | 0 to 536870911

Specify your CAN message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify
hexadecimal values by using the hex2dec function. This option is available if you choose to input raw
data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 to 8

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your data input, the CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw data or manually specify signals.

 CAN Pack

2-403

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8'
Default: '8'

Remote frame — CAN message as remote frame
off (default) | on

Specify the CAN message as a remote frame.

Programmatic Use
Block Parameter: Remote
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output as bus — CAN message as bus
off (default) | on

Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Interfaces”.

Programmatic Use
Block Parameter: BusOutput
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Add signal — Add CAN signal

Add a new signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

This table appears if you choose to specify signals manually or define signals by using a CANdb file.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals in this table. Each signal that you
create has these values:

2 Blocks

2-404

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least significant bit, to the most significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN Pack

2-405

Little-Endian Byte Order Counted from the Least-Significant Bit to the Highest

2 Blocks

2-406

Address
• BE: Where byte order is in big-endian format (Motorola). In this format you count bits from the
least-significant bit to the most-significant bit. For example, if you pack one byte of data in big-
endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN Pack

2-407

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

2 Blocks

2-408

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block packs the signals into the CAN message at each time step:

• Standard: The signal is packed at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has these signals with the following types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block packs Signal-B along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block packs Signal-C along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide must match the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. For more information, see the Data input as parameter conversion
formula.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. For more information, see the Data input as parameter conversion
formula.

 CAN Pack

2-409

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed the settings.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Design Your Model for Effective Acceleration”

2 Blocks

2-410

CAN Unpack
Unpack individual signals from CAN messages

Libraries:
Vehicle Network Toolbox / CAN Communication
Embedded Coder / Embedded Targets / Host Communication
Embedded Coder Support Package for Texas Instruments C2000
Processors / Target Communication
Simulink Real-Time / CAN / CAN MSG blocks

Description
The CAN Unpack block unpacks a CAN message into signal data using the specified output
parameters at every time step. Data is output as individual signals.

To use this block, you also need a license for Simulink software.

The CAN Unpack block supports:

• The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can speed up the
execution of Simulink models.

• The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

For more information on these features, see “Design Your Model for Effective Acceleration”.

Tip

• To process every message coming through a channel, it is recommended that you use the CAN
Unpack block in a function trigger subsystem. See “Using Triggered Subsystems”.

• This block can be used to decode the signals of J1939 parameter groups up to 8 bytes. However, to
work with J1939 messages, it is preferable to use the blocks in the J1939 Communication block
library instead of this block.

Ports
Input

CAN Msg — CAN message input
CAN_MESSAGE | CAN_MESSAGE_BUS

This block has one input port, CAN Msg. The block takes the specified input CAN messages and
unpacks their signal data to separate outputs.

The block supports the following signal data types: single, double, int8, int16, int32, int64, uint8,
uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

 CAN Unpack

2-411

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Data — CAN signal output
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The block has one output port by default. The number of output ports is dynamic and depends on the
number of signals that you specify for the block to output. For example, if your message has four
signals, the block can have four output ports.

For signals specified manually or by a CANdb, the default output data type for CAN signals is double.
To specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and
boolean. The block does not support fixed-point types.

Additional output ports can be added by selecting the options in the parameters Output ports pane.
For more information, see the parameters Output identifier, Output timestamp, Output
error, Output remote, Output length, and Output status.

Parameters
Data to output as — Select your data signal
raw data (default) | manually specify signals | CANdb specified signals

• raw data: Output data as a uint8 vector array. If you select this option, you specify only the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

The conversion formula is:

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.
• manually specified signals: You can specify data signals. If you select this option, use the

Signals table to create your signals message manually. The number of output ports on your block
depends on the number of signals that you specify. For example, if you specify four signals, your
block has four output ports.

• CANdb specified signals: You can specify a CAN database file that contains data signals. If
you select this option, select a CANdb file. The number of output ports on your block depends on
the number of signals specified in the CANdb file. For example, if the selected message in the
CANdb file has four signals, your block has four output ports.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal

2 Blocks

2-412

definitions specified in the CANdb file populate the Message section of the dialog box. The signals
specified in the CANdb file populate Signals table. File names that contain non-alphanumeric
characters such as equal signs, ampersands, and so forth are not valid CAN database file names. You
can use periods in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — CAN message list
array of character vectors

This option is available if you specify in the Data to be output as list that your data is to be output
as a CANdb file and you select a CANdb file in the CANdb file field. You can select the message that
you want to view. The Signals table then displays the details of the selected message.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN message name
CAN Msg (default) | character vector

Specify a name for your CAN message. The default is CAN Msg. This option is available if you choose
to output raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to output raw data or manually specify signals. For CANdb-
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

CAN Identifier — CAN message identifier
0 (default) | 0 to 536870911

Specify your CAN message ID. This number must be an integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify -1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values by using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier

 CAN Unpack

2-413

Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 to 8

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your output data, the CANdb file defines the length of your message. Otherwise, this
field defaults to 8. This option is available if you choose to output raw data or manually specify
signals.

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8'
Default: '8'

Add signal — Add CAN signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

If you choose to specify signals manually or define signals by using a CANdb file, this table appears.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal that you create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

2 Blocks

2-414

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN Unpack

2-415

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

2 Blocks

2-416

Address
• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from

the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
big-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN Unpack

2-417

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

2 Blocks

2-418

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block unpacks the signals from the CAN message at each time step:

• Standard: The signal is unpacked at each time step.
• Multiplexor: The Multiplexor signal or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block unpacks Signal-B along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block unpacks Signal-C along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide must match the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). For more information, see the Data input as parameter conversion formula.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. For more information, see the Data input as parameter conversion formula.

 CAN Unpack

2-419

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Output identifier — Add CAN ID output port
off (default)

Select this option to output a CAN message identifier. The data type of this port is uint32.

Programmatic Use
Block Parameter: IDPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output timestamp — Add Timestamp output port
off (default) | on

Select this option to output the message timestamp. This value indicates when the message was
received, measured as the number of seconds elapsed since the model simulation began. This option
adds a new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: TimestampPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output error — Add Error output port
off (default) | on

Select this option to output the message error status. This option adds a new output port to the block.
An output value of 1 on this port indicates that the incoming message is an error frame. If the output
value is 0, there is no error. The data type of this port is uint8.

Programmatic Use
Block Parameter: ErrorPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output remote — Add Remote output port
off (default) | on

Select this option to output the message remote frame status. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: RemotePort

2 Blocks

2-420

Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output length — Add Length output port
off (default) | on

Select this option to output the length of the message in bytes. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: LengthPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output status — Add Status output port
off (default) | on

Select this option to output the message received status. The status is 1 if the block receives a new
message and 0 if it does not. This option adds a new output port to the block. The data type of this
port is uint8.

Programmatic Use
Block Parameter: StatusPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Design Your Model for Effective Acceleration”

 CAN Unpack

2-421

Serial Configuration
Configure parameters for serial port

Libraries:
Instrument Control Toolbox
Motor Control Blockset / Protection and Diagnostics

Description
The Serial Configuration block configures parameters for a serial port that you can use to send and
receive data. Use this block to set the parameters of your serial port before you set up the Serial
Receive and the Serial Send blocks.

Note You must configure your serial port parameters using the Serial Configuration block before you
specify the Serial Receive and Serial Send block parameters.

Other Supported Features

• The Serial Configuration block supports the use of Simulink Accelerator mode, but not Rapid
Accelerator. This feature speeds up the execution of Simulink models.

• The Serial Configuration block supports the use of model referencing. This feature lets your model
include other Simulink models as modular components.

• The Serial Configuration block supports C/C++ code generation. This feature allows you to
generate C and C++ code using Simulink Coder.

For more information on these features, see the “Simulink” documentation.

Parameters
Port — Serial communication port
available communication ports

Serial port on your machine that you want to configure. Use this configured port to send and receive
data with your Serial Send and Serial Receive blocks. If you have not configured a port, the block
returns an error when you run your model.

Note Each Serial Send and Serial Receive block must have a configured Serial Configuration block.
If you use multiple serial ports in your simulation, you must configure each port using a separate
Serial Configuration block.

Programmatic Use
Block Parameter: Port
Type: character vector, string

Baud rate — Communication speed
9600 (default) | positive integer

2 Blocks

2-422

Rate at which bits are transmitted for the serial interface, in bits per second.

Programmatic Use
Block Parameter: BaudRate
Type: character vector, string
Values: positive integer
Default: '9600'

Data bits — Number of bits to represent one character of data
8 (default) | 5 | 6 | 7

Number of data bits to transmit over the serial interface.

Programmatic Use
Block Parameter: DataBits
Type: character vector, string
Values: '5' | '6' | '7' | '8'
Default: '8'

Parity — Parity bit type
none (default) | even | odd

Parity bit type added to data transmitted by serial port. You can use this parameter to add a parity bit
(also referred to as a check bit) to your data. Adding a parity bit to a string of binary code is a method
of detecting errors in data transmission by ensuring that the total number of 1-bits is even or odd.

The value of the parity bit is determined by the number of 1s in a given set of bits and is set as
follows.

Parity Bit Type Parity Bit Value
If number of 1s is even If number of 1s is odd

none No parity bit set No parity bit set
even 0 1
odd 1 0

Note Starting in R2021a, the Parity parameter no longer supports mark or space. For more
information, see .

Programmatic Use
Block Parameter: Parity
Type: character vector, string
Values: 'none' | 'even' | 'odd'
Default: 'none'

Stop bits — Pattern of bits that indicates the end of a character
1 (default) | positive scalar

Number of bits used to indicate the end of a byte. This parameter depends on the value you select for
the Data bits parameter. If you select data bits 6, 7, or 8, the default value is 1 and the other
available choice is 2. If you select data bit 5, the default value is 1 and the other available choice is
1.5.

 Serial Configuration

2-423

Programmatic Use
Block Parameter: StopBits
Type: character vector, string
Values: positive scalar
Default: '1'

Byte order — Sequential order of bytes
little-endian (default) | big-endian

Sequential order in which bytes are arranged into larger numerical values. If the byte order is
little-endian, then the instrument stores the first byte in the first memory address. If the byte
order is big-endian, then the instrument stores the last byte in the first memory address.

Configure the byte order to the appropriate value for your instrument before performing a read or
write operation. Refer to your instrument documentation for information about the order in which it
stores bytes.

Programmatic Use
Block Parameter: ByteOrder
Type: character vector, string
Values: 'little-endian' | 'big-endian'
Default: 'little-endian'

Flow control — Mode for managing data transmission rate
none (default) | hardware

Process of managing the rate of data transmission on your serial port. Select none to have no flow
control or hardware to let your hardware determine the flow control.

Programmatic Use
Block Parameter: FlowControl
Type: character vector, string
Values: 'none' | 'hardware'
Default: none

Timeout — Allowed time to complete operations
10 (default) | positive scalar

Amount of time that the model waits for data during each simulation time step.

Programmatic Use
Block Parameter: Timeout
Type: character vector, string
Values: positive scalar
Default: '10'

Version History
Introduced in R2008a

R2021a: Parity parameter no longer supports mark or space in Serial Configuration block
Errors starting in R2021a

The mark and space options for the Parity parameter are no longer supported in the Serial
Configuration block. Valid values for Parity are none (default), even, and odd.

2 Blocks

2-424

If you try to open an existing model that has the Parity value set to mark or space, MATLAB returns
a warning and changes the parameter to the default value none.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates platform-specific code for the host machine's platform only (Windows®, macOS,
Linux®).

See Also
Serial Receive | Serial Send

 Serial Configuration

2-425

Serial Receive
Receive binary data over serial port

Libraries:
Instrument Control Toolbox
Motor Control Blockset / Protection and Diagnostics

Description
The Serial Receive block configures and opens an interface to the specified serial port. The
configuration and initialization occur once at the start of the model's execution. The block acquires
data from the serial port during the model's run time. You can use only one Serial Receive block at a
time to receive data from a specific serial port.

Note You must configure your serial port parameters using the Serial Configuration block before you
specify the Serial Receive block parameters.

This block has no input ports. It has one or two output ports based on whether you select blocking or
non-blocking mode. If you select blocking mode, the block has one output port, Data, corresponding
to the data it receives. If you do not select blocking mode, the block has two output ports, Data and
Status.

This block uses a First In, First Out (FIFO) buffer to receive data from the serial port. At each time
step, the Data port returns the requested values from the buffer. In non-blocking mode, the Status
port indicates if the block has received new data. If the Status port displays 1, new data is available
and if the Status port displays 0, no new data is available.

Other Supported Features

• The Serial Receive block supports the use of Simulink Accelerator mode, but not Rapid
Accelerator. This feature speeds up the execution of Simulink models.

• The Serial Receive block supports the use of model referencing. This feature lets your model
include other Simulink models as modular components.

• The Serial Receive block supports C/C++ code generation. This feature allows you to generate C
and C++ code using Simulink Coder.

For more information on these features, see the “Simulink” documentation.

Ports
Output

Data — Data received
vector | matrix | array

Data received by the block from the serial port, returned as a vector, matrix, or array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

2 Blocks

2-426

Status — New data available
false or 0 (default) | true or 1

New data available status, returned as numeric or logical 1 (true) or 0 (false). If this port returns
1, new data is available to be read.

Dependencies

To enable this port, unselect the Enable blocking mode parameter.
Data Types: Boolean

Parameters
Port — Serial communication port
available communication ports

Serial port on your machine that you want to receive data from. Select a port from the available ports
and then configure the port using the Serial Configuration block. If you have not configured a port,
the block returns an error when you run your model.

Note Each Serial Receive block must have a configured Serial Configuration block. If you use
multiple serial ports in your simulation, you must configure each port using a separate Serial
Configuration block.

Programmatic Use
Block Parameter: Port
Type: character vector, string

Data type — Output data type
uint8 (default) | single | double | int8 | int16 | uint16 | int32 | uint32

Data type that the block receives from the serial port, specified as a MATLAB numeric data type.

Programmatic Use
Block Parameter: DataType
Type: character vector, string
Values: 'uint8' | 'single' | 'double' | 'int8' | 'int16' | 'uint16' | 'int32' | 'uint32'
Default: 'uint8'

Header — Header
numeric array | integer from 0 to 255, inclusive

If this parameter is selected, you can specify the header that indicates the beginning of your data
block. The simulation disregards data that occurs before the header. The header data is not sent to
the output port. By default, this parameter is not selected and no header is specified.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters. The exact form of this parameter depends on the type of the ASCII
character.

 Serial Receive

2-427

Type of ASCII
Character

Example ASCII
Character

MATLAB Command Parameter Value

Special character "#" uint8('#') [35]
Numeric "81" uint8('81') [56 49]
Alphabet "Start" uint8('Start') [83 116 97 114

116]

You can also specify this parameter using the hexadecimal representation of the ASCII characters.

Programmatic Use
Block Parameter: ToggleHeader
Type: character vector, string
Values: 'on' | 'off'
Default: 'off'
Block Parameter: Header
Type: character vector, string
Values: integer array

Terminator — Terminator
<none> (default) | CR ('\r') | LF ('\n') | CR/LF ('\r\n') | NULL ('\0') | Custom
Terminator

If this parameter is selected, you can specify the terminator that indicates the end of your data block.
The simulation considers any data that occurs after the terminator as a new data block. The
terminator data is not sent to the output port. This terminator must match the terminator in the data
you are reading from your serial port, if it has one.

If you select Custom Terminator, you can specify your own terminator value.

Programmatic Use
Block Parameter: ToggleTerminator
Type: character vector, string
Values: 'on' | 'off'
Default: 'off'
Block Parameter: Terminator
Type: character vector, string
Values: '<none>' | 'CR ('\r')' | 'LF ('\n')' | 'CR/LF ('\r\n')' | 'NULL ('\0')' |
'Custom Terminator'
Default: '<none>'

Custom terminator — Custom terminator
numeric array | integer from 0 to 255, inclusive

Custom terminator that indicates the end of your data block. The simulation considers any data that
occurs after the terminator as a new data block. The terminator data is not sent to the output port.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters. The exact form of this parameter depends on the type of the ASCII
character.

2 Blocks

2-428

Type of ASCII
Character

Example ASCII
Character

MATLAB Command Parameter Value

Special character "#" uint8('#') [35]
Numeric "81" uint8('81') [56 49]
Alphabet "End" uint8('End') [69 110 100]

You can also specify this parameter using the hexadecimal representation of the ASCII characters.

Programmatic Use
Block Parameter: CustomTerminator
Type: character vector, string
Values: integer array

Input Format — Format of data read
Column major (default) | Row major

Format of the data that the block receives from the serial port, specified as Row major or Column
major.

Programmatic Use
Block Parameter: InputFormat
Type: character vector, string
Values: 'Row major' | 'Column major'
Default: 'Column major'

Data size — Number of values read
[1 1] (default) | numeric array

Output data size, or the number of values that should be read at each simulation time step. This
parameter is specified as a multidimensional numeric array. The data size does not include the header
or terminator values.

Programmatic Use
Block Parameter: DataSize
Type: character vector, string
Values: integer array
Default: '[1 1]'

Enable blocking mode — Simulation waits while receiving data
on (default) | off

This parameter has the simulation wait while the block receives data. When new data becomes
available, the simulation continues from the next time step. Unselect the check box if you do not want
the read operation to cause the simulation to wait.

If you enable blocking mode, the simulation waits for the requested data to become available. The
model waits for up to the amount of time specified by the Timeout parameter in the Serial
Configuration block. If new data does not become available during a simulation, you can return an
error by selecting the Error option for the Action when data is not available parameter.

If you do not enable blocking mode, the simulation runs continuously and the block has two output
ports, Status and Data. The Data port contains the requested set of data at each time step. The
Status port contains 0 or 1 based on whether it received new data at the given time step.

 Serial Receive

2-429

Programmatic Use
Block Parameter: EnableBlockingMode
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Action when data is not available — Action to take when data not available
Output last received value (default) | Output custom value | Error

Action the block should take when data is not available. Available options are:

• Output last received value — Block returns the value it received at the preceding time step
when it does not receive data at current time step.

• Output custom value — Block returns any user-defined value when it does not receive current
data. Define the custom value in the Custom value field.

• Error — Block returns an error when it does not receive current data. You must select Enable
blocking mode to use this option.

Programmatic Use
Block Parameter: ActionDataUnavailable
Type: character vector, string
Values: 'Output last received value' | 'Output custom value' | 'Error'
Default: 'Output last received value'

Custom value — Custom output value when data unavailable
0 (default) | numeric

Custom value for the block to output when it does not receive new data. The custom value can be a
scalar or value equal to the size of data that it receives (specified by Data size parameter). You must
select Output custom value as the Action when data is unavailable to set this parameter.

Programmatic Use
Block Parameter: CustomValue
Type: character vector, string
Values: numeric
Default: '0'

Block sample time — Sampling time
0.01 (default) | positive numeric

Sampling time of the block during the simulation. This is the rate at which the block is executed
during simulation.

Programmatic Use
Block Parameter: SampleTime
Type: character vector, string
Values: positive numeric
Default: '0.01'

Version History
Introduced in R2008a

2 Blocks

2-430

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates platform-specific code for the host machine's platform only (Windows, macOS,
Linux).

See Also
Serial Configuration | Serial Send

 Serial Receive

2-431

Serial Send
Send binary data over serial port

Libraries:
Instrument Control Toolbox
Motor Control Blockset / Protection and Diagnostics

Description
The Serial Send block configures and opens an interface to the specified serial port. The
configuration and initialization occur once at the start of the model's execution. The block sends data
from the model to the serial port during the model's run time. You can use multiple Serial Send blocks
at a time to send data to a specific serial port.

Note You must configure your serial port parameters using the Serial Configuration block before you
specify the Serial Send block parameters.

The Serial Send block has one input port that accepts both 1-D vector and matrix data. This block has
no output ports. The block inherits the data type from the signal at the input port. Valid data types
are single, double, int8, uint8, int16, uin16, int32, and uint32.

Other Supported Features

• The Serial Send block supports the use of Simulink Accelerator mode, but not Rapid Accelerator.
This feature speeds up the execution of Simulink models.

• The Serial Send block supports the use of model referencing. This feature lets your model include
other Simulink models as modular components.

• The Serial Send block supports C/C++ code generation. This feature allows you to generate C and
C++ code using Simulink Coder.

For more information on these features, see the “Simulink” documentation.

Ports
Input

Data — Data values to send
vector | matrix | array

Data values to send from the block over your serial port, specified as a vector, matrix, or array. Set
the parameters for this block before you send data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

2 Blocks

2-432

Parameters
Port — Serial communication port
available communication ports

Serial ports on your machine that you want to send data to. Select a port from the available ports and
then configure the port using the Serial Configuration block. If you have not configured a port, the
block returns an error when you run your model.

Note Each Serial Send block must have a configured Serial Configuration block. If you use multiple
serial ports in your simulation, you must configure each port using a separate Serial Configuration
block.

Programmatic Use
Block Parameter: Port
Type: character vector, string

Header — Header
numeric array | integer from 0 to 255, inclusive

Header that indicates the beginning of your data block. The Serial Send block adds the header in
front of the data before sending it over the serial port. By default, no header is specified.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters. The exact form of this parameter depends on the type of the ASCII
character.

Type of ASCII
Character

Example ASCII
Character

MATLAB Command Parameter Value

Special character "#" uint8('#') [35]
Numeric "81" uint8('81') [56 49]
Alphabet "Start" uint8('Start') [83 116 97 114

116]

You can also specify this parameter using the hexadecimal representation of the ASCII characters.

Programmatic Use
Block Parameter: Header
Type: character vector, string
Values: integer array

Terminator — Terminator
<none> (default) | CR ('\r') | LF ('\n') | CR/LF ('\r\n') | NULL ('\0') | Custom
Terminator

Terminator that indicates the end of your data block. The Serial Send block appends the terminator to
the data before sending it over the serial port.

If you select Custom Terminator, you can specify your own terminator value.

 Serial Send

2-433

Programmatic Use
Block Parameter: Terminator
Type: character vector, string
Values: '<none>' | 'CR ('\r')' | 'LF ('\n')' | 'CR/LF ('\r\n')' | 'NULL ('\0')' |
'Custom Terminator'
Default: '<none>'

Custom terminator — Custom terminator
numeric array | integer from 0 to 255, inclusive

Custom terminator that indicates the end of your data block. The Serial Send block appends the
terminator to the data before sending it over the serial port.

The numeric array specified in this parameter is the uint8 integer representation of the
corresponding ASCII characters. The exact form of this parameter depends on the type of the ASCII
character.

Type of ASCII
Character

Example ASCII
Character

MATLAB Command Parameter Value

Special character "#" uint8('#') [35]
Numeric "81" uint8('81') [56 49]
Alphabet "End" uint8('End') [69 110 100]

You can also specify this parameter using the hexadecimal representation of the ASCII characters.
Programmatic Use
Block Parameter: CustomTerminator
Type: character vector, string
Values: integer array

Enable blocking mode — Simulation waits while sending data
on (default) | off

This parameter has the simulation wait while the block sends data. Unselect the check box if you do
not want the write operation to cause the simulation to wait.

If you enable blocking mode, the simulation waits for the data to be sent. If you do not enable
blocking mode, the simulation runs continuously.
Programmatic Use
Block Parameter: EnableBlockingMode
Type: character vector, string
Values: 'on' | 'off'
Default: 'on'

Version History
Introduced in R2008a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-434

This block generates platform-specific code for the host machine's platform only (Windows, macOS,
Linux).

See Also
Serial Configuration | Serial Receive

 Serial Send

2-435

Appendix

3

	Configuration Parameters
	Model Configuration Parameters for Texas Instruments C2000 Processors
	Hardware board settings
	Design Mapping
	Task profiling in simulation
	Task profiling on processor
	Simulation settings
	Hardware Board Settings

	Model Configuration Parameters for Texas Instruments F2838x (ARM Cortex-M4)
	Hardware Board Settings

	Model Configuration Parameters for Texas Instruments Concerto F28M3x (ARM Cortex-M3)
	Hardware Implementation Pane Overview
	C28x / ARM Cortex-M3 - Build options
	M3x-Clocking
	M3x-GPIO A–D
	M3x-UART0–4
	M3x-Ethernet
	M3x-PIL
	External mode
	SD Card Logging

	C28x / ARM Cortex-M3 - Build options
	Build action
	Device name
	Disable parallel build
	Boot From Flash (stand alone execution)
	Use custom linker command file
	Linker command file
	CCS hardware configuration file

	M3x-Clocking
	Desired C28x CPU clock in MHz
	Oscillator clock (OSCCLK) frequency in MHz
	Auto set PLL based on OSCCLK and CPU clock
	System PLL multiplier (SYSPLLMULT)[1–127.75]
	System clock divider (SYSDIVSEL)
	Achievable C28x SYSCLK in MHz = (OSCCLK * SYSPLLMULT/ 2/ SYSDIVSEL)
	M3 System clock divider (M3SSDIVSEL)
	M3 SYSCLK in MHz = (OSCCLK * SYSPLLMULT/ 2/ SYSDIVSEL/ M3SSDIVSEL)

	M3x-GPIO A–D
	Enable GPIO port A
	Show GPIOA settings for
	Select the CPU core which controls Pin #
	Select the pin type for Pin 0

	M3x-UART0–4
	Enable UART Loopback
	Enable M3 UART4 to C28 SCI-A Loopback
	Desired Baud rate (in bits/sec)
	Closest Achievable Baud rate (in bits/sec)
	Number of stop bits
	Parity mode
	Pin assignment(Tx)
	Pin assignment(Rx)
	Enable Transmit Interrupt
	Enable Receive Interrupt

	M3x-Ethernet
	Enable DHCP for local IP address assignment
	Local IP address
	Subnet mask
	Ethernet local host name
	MAC address

	M3x-PIL
	PIL communication interface
	Serial port
	PIL Baud Rate (UART) Baud rate)
	Ethernet port

	External mode
	Communication interface
	Serial port
	Verbose

	Serial Configuration for External Mode and PIL
	Analog subsystem
	Overrun detection
	Input X-BAR
	Output X-BAR
	CLB X-BAR
	CLB
	ARM Cortex-M4 - MCAN
	External Mode
	PIL
	Hardware Board Settings
	Processing Unit

	ARM Cortex-M4 - Build Options
	ARM Cortex-M4 - Clocking
	ARM Cortex-M4 - Ethernet
	ARM Cortex-M4 - UART
	C28x-ADC/C28x-ADC_A/C28x-ADC#
	C28x-Build Options
	C28x-Clocking
	C28x-DAC
	C28x-COMP
	C28x-DMA_ch#
	C28x-eCAN_A, C28x-eCAN_B
	C28x-eCAP
	C28x-EMIF
	C28x-ePWM
	C28x-eQEP
	C28x-GPIO
	C28x-I2C
	C28x-LIN
	C28x-Scheduler Options
	C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D
	C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI_D
	C28x-Watchdog
	CMPSS
	Execution profiling
	External Interrupt
	External Mode
	PIL
	SD Card Logging
	SDFM
	c2000setup

	Blocks
	C2000 Absolute IQN
	C2000 Arctangent IQN
	C280x/C2833x ADC
	C28x Hardware Interrupt
	C2802x/C2803x/C2806x/F28M3x COMP
	C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ADC
	C2803x LIN Receive
	C2803x LIN Transmit
	C281x ADC
	C281x CAP
	C281x GPIO Digital Input
	C281x GPIO Digital Output
	C281x PWM
	C281x QEP
	C281x Timer
	C2000 Division IQN
	C2000 Float to IQN
	C2000 Fractional part IQN
	C2000 Fractional part IQN x int32
	C2000 Integer part IQN
	C2000 Integer part IQN x int32
	C2000 IQN to Float
	C2000 IQN x int32
	C2000 IQN x IQN
	C2000 IQN1 to IQN2
	C2000 IQN1 x IQN2
	C2000 Magnitude IQN
	C2000 Saturate IQN
	C2000 Square Root IQN
	C2000 Trig Fcn IQN
	F2807x/F2837xD/F2837xS/F28004x/F28003x/F2838x DAC
	F2837xD/F2838x/F2838x-M4 IPC Receive
	F2837xD/F2838x/F2838x-M4 IPC Transmit
	F2838x-M4 UART Receive
	F2838x-M4 UART Transmit
	F2807x/F2837xD/F2837xS/F28004x/F2838x/F28002x/F28003x CMPSS
	F2838x-M4 UDP Send
	F2838x-M4 UDP Receive
	F2838x-M4 Hardware Interrupt
	F2807x/F2837xD/F2837xS/F28004x/F28003x/F2838x SDFM
	F2838x-M4 TCP Receive
	F2838x-M4 TCP Send
	F2838x-M4 MCAN Receive
	F2838x-M4 MCAN Transmit
	F2838x-M4 MCAN Interrupt Status
	F28M35x/F28M36x GPIO Digital Input
	F28M35x/F28M36x GPIO Digital Output
	Hardware Interrupt
	F28M35x/F28M36x UART Transmit
	F28M35x/F28M36x UART Receive
	F28M35x/F28M36x UDP Send
	F28M35x/F28M36x UDP Receive
	F28M35x/F28M36x TCP Send
	F28M35x/F28M36x TCP Receive
	CLA Math
	Interprocess Data Read
	Interprocess Data Write
	Interprocess Data Channel
	Task Manager
	Hardware Interrupt
	ADC Interface
	PWM Interface
	C28x eCAP
	C28x I2C Receive
	C28x I2C Transmit
	C28x SCI Receive
	C28x SCI Transmit
	C28x Software Interrupt Trigger
	C28x SPI Controller Transfer
	C28x SPI Receive
	C28x SPI Transmit
	C28x Watchdog
	C28x eCAN Receive
	C28x eCAN Transmit
	C28x eQEP
	C28x CLA Task
	c280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x/F28002x/F28003x ePWM
	CLA Subsystem
	Protocol Encoder
	Protocol Decoder
	BMI160
	BMM150
	BME280
	Read Data from IMU and Environmental Sensors
	Encode and Decode Serial Data Using C2000-based Hardware
	
	ADXL34x Accelerometer
	LIS3DH Accelerometer Sensor
	BMP280 Pressure Sensor

	C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F2838x-M4/F28004x/F28002x/F28003x GPIO Digital Input
	C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F2838x-M4/F28004x/F28002x/F28003x GPIO Digital Output
	C2802x/C2803x/C2806x/F28M3x AnalogIO Input
	C2802x/C2803x/C2806x/F28M3x AnalogIO Output
	Byte Unpack
	Byte Pack
	Memory Allocate
	Memory Copy
	Idle Task
	CLA Task Manager
	Software Trigger CPU<->CLA
	CAN FD Pack
	CAN FD Unpack
	CAN Pack
	CAN Unpack
	Serial Configuration
	Serial Receive
	Serial Send

	Appendix

